
Hans Berger

Automating with
SIMATIC S7-1200

Confi guring, Programming and Testing
with STEP 7 Basic
Visualization with WinCC Basic

Second Edition

Berger Automating with SIMATIC S7-1200

Hans Berger

Automating
with SIMATIC
Controllers, Software, Programming,
Data Communication, Operator Control
and Process Monitoring

5th revised and enlarged edition, 2012,
284 pages, 140 illustrations, 49 tables, hardcover
ISBN 978-3-89578-387-6, e 44.90

Hans Berger

Automating
with SIMATIC S7-300
inside TIA Portal
Configuring, Programming and Testing
with STEP 7 Professional V11

2012, 709 pages, 429 illustrations,
85 tables, hardcover
ISBN 978-3-89578-382-1, e 69.90

Hans Berger

Automating
with SIMATIC S7-400
inside TIA Portal
Configuring, Programming and Testing
with STEP 7 Professional

June 2013, ca. 760 pages,
441 illustrations, 94 tables, hardcover
ISBN 978-3-89578-383-8, e 69.90

Nicolai Andler

Tools for Project
Management, Workshops
and Consulting
A Must-Have Compendium of
Essential Tools and Techniques

2nd revised and enlarged edition, 2011,
382 pages, 136 illustrations, 55 tables, hardcover
ISBN 978-3-89578-370-8, e 39.90

M.A.M
Highlight

M.A.M
Highlight

M.A.M
Highlight

M.A.M
Highlight

Automating with
SIMATIC S7-1200
Configuring, Programming and
Testing with STEP 7 Basic
Visualization with HMI Basic

by Hans Berger

2nd enlarged and revised edition, 2013

Publicis Publishing

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

The author, translators and publisher have taken great care with all texts and
illustrations in this book. Nevertheless, errors can never be completely avoided.
The publisher, author and translators accept no liability, for whatever legal reasons,
for any damage resulting from the use of the programming examples.

www.publicis-books.de

Print ISBN: 978-3-89578-385-2
ePDF ISBN: 978-3-89578-901-4

2nd edition, 2013

Editor: Siemens Aktiengesellschaft, Berlin and Munich
Publisher: Publicis Publishing, Erlangen
© 2013 by Publicis Erlangen, Zweigniederlassung der PWW GmbH

This publication and all parts thereof are protected by copyright. Any use of it
outside the strict provisions of the copyright law without the consent of the
publisher is forbidden and will incur penalties. This applies particularly
to reproduction, translation, microfilming or other processing‚ and to storage
or processing in electronic systems. It also applies to the use of individual
illustrations or extracts from the text.

Printed in Germany

Preface

5

Preface

The SIMATIC automation system unites all the subsystems of an automation solu-
tion under a uniform system architecture to form a homogenous whole from the
field level right up to process control.

The Totally Integrated Automation concept permits uniform handling of all automa-
tion components using a single system platform and tools with uniform operator
interfaces. These requirements are fulfilled by the SIMATIC automation system
which provides uniformity for configuration, programming, data management and
communication.

This book describes the newly developed SIMATIC S7-1200 automation system. The
S7-1200 programmable controllers are of compact design and allow modular ex-
pansion. Many small applications can be solved using the CPU module with
on-board I/O. The technological functions integrated in the CPU module mean that
extremely versatile use of the device is possible. Two established programming lan-
guages are available for solving automation tasks: ladder logic (LAD) and function
block diagram (FBD).

New SIMATIC HMI Basic Panels have been designed for operator control and moni-
toring appropriate to the S7-1200 programmable controllers, and provide a perfor-
mance and functionality optimized for small applications. A touch screen with var-
ious monitor sizes and coordinated communication over Industrial Ethernet are
ideal prerequisites for interaction with S7-1200.

The STEP 7 Basic engineering software makes it possible to use all S7-1200 control-
ler options. STEP 7 Basic is the common tool for hardware configuration, genera-
tion of the control program, and for debugging and diagnostics. The SIMATIC
WinCC Basic configuration software included in STEP 7 Basic is used to configure
the Basic Panels. Modern and intuitive user guidance allows efficient and task-ori-
ented engineering of control and visualization devices.

This book describes the S7-1200 automation system with S7-1200 programmable
controllers and HMI Basic Panels. The description focuses on the generation of the
control program using STEP 7 Basic engineering software Version 11 SP2.

Nuremberg, February 2013 Hans Berger

The contents of the book at a glance

6

The contents of the book at a glance

Start

Introduction

SIMATIC S7-1200: Overview of the SIMATIC S7-1200 automation system.
STEP 7 Basic: Introduction to the engineering software for SIMATIC S7-1200.
SIMATIC project: Basic functions for the automation solution.

Devices & networks

The hardware components of S7-1200

Modules: Overview of the SIMATIC S7-1200 modules.

Device configuration

Hardware configuration: Configuration of the hardware design.
Network configuration: Configuration of a communication network.

PLC programming

The control program

Operating modes: How the CPU module responds with STARTUP, RUN and STOP.
Processing modes: Restart characteristics, main program, interrupt processing, and
error handling define the processing of the control program.
Blocks: Organization blocks, function blocks, functions, and data blocks structure
the control program.

The program editor

Programming: How the control program is produced.
Program information: Tools for supporting programming.

Ladder logic and function block diagram as programming languages

Program elements: The characteristics of LAD and FBD programming; the use of contacts,
coils, standard boxes, Q boxes and EN/ENO boxes.

Tags and data types

Tags: Operand areas, project-wide and block-local tags, addressing.
Data types: Description of elementary and compound data types.

Description of the control functions

Basic functions: Binary operations, memory functions, edge evaluation, timer and
counter functions.
Digital functions: Move, comparison, arithmetic, math, conversion, shift, and
logic functions.
Program flow control: Jump functions, block end function, block calls.

The contents of the book at a glance

7

Online & diagnostics

Connection of programming device to PLC station

Online operation: Establish connection to PLC station.
Status LEDs: The modules signal an error.
Diagnostics information: Find the error using the diagnostics information.
Online tools: Control the CPU module using the online tools.

Online & offline project data

Download: Download control program into CPU memory.
Blocks: Edit and compare the blocks offline/online.
Test: Test the control function using program status and monitoring tables.

Data communication

Open user communication

Data transmission: Data exchange from PLC to PLC over Ethernet.

Point-to-point connection

PtP: Data transmission with CM modules via RS232 and RS485.

Visualization

Configuration of Basic Panels

Introduction: Overview of Basic Panels.
Start: Create an HMI project, the HMI device wizard.
Connection to the PLC: Create HMI tags and area pointers.
Create screens: Configuration of process screens – templates, layers and screen
changeover.
Working with image elements: Arrange and edit operator control and display elements,
configure a message system, create recipes, transfer data records, configure user manage-
ment.

Complete the HMI program

Simulation: Simulate the HMI program with PLC station or with tag table.
Connection: Transfer the HMI program to the HMI station.

Appendix

Integral and technological functions

Functions: High-speed counter, pulse generator, motion control, PID controller.

Global libraries

Overview: USS drive control, MODBUS blocks.

Table of contents

8

Table of contents

1 Introduction . 21

1.1 Overview of the S7-1200 automation system . 21
1.1.1 SIMATIC S7-1200 . 22
1.1.2 Overview of STEP 7 Basic . 24
1.1.3 Three programming languages . 25
1.1.4 Execution of the user program . 27
1.1.5 Data management in the SIMATIC automation system 29
1.1.6 Operator control and monitoring with process images 30

1.2 Introduction to STEP 7 Basic for S7-1200 . 31
1.2.1 Installing STEP 7 . 31
1.2.2 Automation License Manager . 31
1.2.3 Starting STEP 7 Basic . 32
1.2.4 Portal view . 32
1.2.5 Help Information system . 33
1.2.6 The windows of the project view . 34
1.2.7 Adapting the user interface . 36

1.3 Editing a SIMATIC project . 37
1.3.1 Structured representation of project data . 38
1.3.2 Project data and editors for a PLC station . 39
1.3.3 Creating and editing a project . 41
1.3.4 Creating and editing libraries . 42

2 SIMATIC S7-1200 automation system . 43

2.1 S7-1200 station components . 43
2.2 S7-1200 CPU modules . 44

2.2.1 Integrated I/O . 44
2.2.2 PROFINET connection . 46
2.2.3 Status LEDs . 47
2.2.4 SIMATIC Memory Card . 47
2.2.5 Expansions of the CPU . 47

2.3 Signal modules (SM) . 49
2.3.1 Digital I/O modules . 49
2.3.2 Analog input/output modules . 50
2.3.3 Properties of the I/O connections . 50

2.4 Communication modules (CM) . 52
2.4.1 Point-to-point communication . 52
2.4.2 PROFIBUS DP . 52
2.4.3 Actuator/sensor interface . 53
2.4.4 GPRS transmission . 53

2.5 Further modules . 54
2.5.1 Compact switch module (CSM) . 54

Table of contents

9

2.5.2 Power module (PM) . 54
2.5.3 TS Adapter IE Basic . 54
2.5.4 SIM 1274 simulator . 55

2.6 SIPLUS S7-1200 . 55

3 Device configuration . 57

3.1 Introduction . 57
3.2 Configuring a station . 60

3.2.1 Adding a PLC station . 60
3.2.2 Arranging modules . 61
3.2.3 Adding an HMI station . 61

3.3 Assigning module parameters . 61
3.3.1 Parameterization of CPU properties . 61
3.3.2 Addressing input and output signals . 64
3.3.3 Parameterization of digital inputs . 65
3.3.4 Parameterization of digital outputs . 65
3.3.5 Parameterization of analog inputs . 66
3.3.6 Parameterization of analog outputs . 66

3.4 Configuring the network . 67
3.4.1 Introduction . 67
3.4.2 Networking stations . 68
3.4.3 Node addresses in a subnet . 69
3.4.4 Connectors . 70
3.4.5 Configuring a PROFINET subnet . 73
3.4.6 Configuring a PROFIBUS subnet . 75
3.4.7 Configuring an AS-i subnet . 77

4 Variables and data types . 79

4.1 Operands and tags . 79
4.1.1 Introduction, overview . 79
4.1.2 Operand areas: inputs and outputs . 80
4.1.3 Operand area bit memory . 82
4.1.4 Operand area data . 84
4.1.5 Operand area temporary local data . 85

4.2 Addressing . 85
4.2.1 Signal path . 85
4.2.2 Absolute addressing of an operand . 86
4.2.3 Absolute addressing of an operand area . 86
4.2.4 Symbolic addressing . 88
4.2.5 Addressing a tag part . 89
4.2.6 Addressing constants . 89
4.2.7 Indirect addressing . 89

4.3 General information on data types . 92
4.3.1 Overview of data types . 92
4.3.2 Implicit data type conversion . 93
4.3.3 Overlaying tags (data type views) . 93

4.4 Elementary data types . 95
4.4.1 Bit-serial data types BOOL, BYTE, WORD and DWORD 95

Table of contents

10

4.4.2 BCD-coded numbers BCD16 and BCD32 . 95
4.4.3 Unsigned fixed-point data types USINT, UINT and UDINT 97
4.4.4 Fixed-point data types with sign SINT, INT and DINT 98
4.4.5 Floating-point data types REAL and LREAL . 98
4.4.6 Data type CHAR . 100
4.4.7 Data type DATE . 100
4.4.8 Data type TIME . 100
4.4.9 TIME_OF_DAY (TOD) data type . 101

4.5 Structured data types . 101
4.5.1 Data type DTL . 101
4.5.2 Data type STRING . 102
4.5.3 Data type ARRAY . 104
4.5.4 Data type STRUCT . 104

4.6 Parameter types . 107
4.6.1 Parameter types for IEC timer functions . 107
4.6.2 Parameter types for IEC counter functions . 108
4.6.3 Parameter type VARIANT . 108
4.6.4 Parameter type VOID . 109

4.7 PLC data types . 109
4.8 System data types . 110

4.8.1 IEC_TIMER system data type . 110
4.8.2 IEC_COUNTER system data type . 112
4.8.3 TCON_Param data type . 112
4.8.4 TADDR_Param data type . 112
4.8.5 Data type ErrorStruct . 112
4.8.6 TimeTransformationRule data type . 115

4.9 Hardware data types . 115

5 Edit user program . 117

5.1 Operating modes . 117
5.1.1 STOP mode . 118
5.1.2 STARTUP mode . 118
5.1.3 RUN mode . 119
5.1.4 Retentive behavior of operands . 121

5.2 Creating a user program . 122
5.2.1 Program draft . 122
5.2.2 Program execution . 123
5.2.3 Nesting depth . 125

5.3 Programming blocks . 125
5.3.1 Block types . 125
5.3.2 Editing block properties . 128
5.3.3 Configuring know-how protection . 132
5.3.4 Copy protection . 132
5.3.5 Block interface . 133
5.3.6 Programming block parameters . 136

5.4 Calling blocks . 137
5.4.1 General information on calling logic blocks . 137
5.4.2 Calling a function (FC) . 139

Table of contents

11

5.4.3 Calling a function block (FB) . 140
5.4.4 “Passing on” of block parameters . 142

5.5 Start-up routine . 142
5.6 Main program . 143

5.6.1 Organization blocks for the main program . 143
5.6.2 Process image update . 143
5.6.3 Cycle time . 144
5.6.4 Reaction time . 146
5.6.5 Stop program execution . 147
5.6.6 Time . 148
5.6.7 Runtime meter . 151

5.7 Interrupt processing . 153
5.7.1 Introduction to interrupt processing . 153
5.7.2 Time-delay interrupts . 155
5.7.3 Cyclic interrupts . 159
5.7.4 Process interrupts . 163
5.7.5 Assigning interrupts during runtime . 164
5.7.6 Delay and enable interrupts . 166

5.8 Troubleshooting, diagnostics . 167
5.8.1 Causes of errors and responses . 167
5.8.2 Error display with the ENO output . 168
5.8.3 Time error OB 80 . 168
5.8.4 Local error handling . 169
5.8.5 Diagnostic functions in the user program . 172
5.8.6 Diagnostics interrupt OB 82 . 176

6 Program editor . 178

6.1 Introduction . 178
6.2 PLC tag table . 178

6.2.1 Creating and editing the PLC tag table . 179
6.2.2 Defining PLC tags . 179
6.2.3 Editing a PLC tag table . 181
6.2.4 Exporting and importing a PLC tag table . 181
6.2.5 Constants tables . 182

6.3 Programming a code block . 183
6.3.1 Creating a new code block . 183
6.3.2 Working area of program editor for code blocks 184
6.3.3 Specifying code block properties . 186
6.3.4 Programming a block interface . 186
6.3.5 Programming control functions . 188
6.3.6 Editing tags . 192
6.3.7 Working with program comments . 193

6.4 Programming a data block . 194
6.4.1 Creating a new data block . 194
6.4.2 Working area of program editor for data blocks 195
6.4.3 Defining properties for data blocks . 196
6.4.4 Declaring data tags . 196
6.4.5 Entering data tags in global data blocks . 198

Table of contents

12

6.5 Compiling blocks . 198
6.5.1 Starting the compilation . 198
6.5.2 Compiling SCL blocks . 199
6.5.3 Eliminating errors following compilation . 200

6.6 Program information . 201
6.6.1 Cross-reference list . 201
6.6.2 Assignment list . 203
6.6.3 Call structure . 204
6.6.4 Dependency structure . 205
6.6.5 Consistency check . 206
6.6.6 CPU resources . 206

6.7 Language setting . 207

7 Ladder logic LAD . 209

7.1 Introduction . 209
7.1.1 Programming with LAD in general . 209
7.1.2 Program elements of ladder logic . 211

7.2 Programming with contacts . 212
7.2.1 NO and NC contacts . 212
7.2.2 Consideration of sensor type in ladder logic . 213
7.2.3 Series connection of contacts . 215
7.2.4 Parallel connection of contacts . 215
7.2.5 Mixed series and parallel connections . 216
7.2.6 T branch, open parallel branch in the ladder logic 217
7.2.7 Negating result of logic operation in the ladder logic 218
7.2.8 Edge evaluation of a binary tag in ladder logic . 218
7.2.9 OK contact . 219
7.2.10 Comparison contacts . 219

7.3 Programming with coils . 221
7.3.1 Simple and negated coils . 222
7.3.2 Set and reset coil . 223
7.3.3 Retentive response due to latching . 223
7.3.4 Edge evaluation with pulse output in the ladder logic 224
7.3.5 Multiple setting and resetting (filling of bit field) in the ladder logic . 225
7.3.6 Starting IEC timer functions in the ladder logic with coils 225

7.4 Programming with Q boxes in the ladder logic . 226
7.4.1 Arrangement of Q boxes in the ladder logic . 226
7.4.2 Memory boxes in the ladder logic . 227
7.4.3 Edge evaluation of current flow . 229
7.4.4 Example of binary scaler in the ladder logic . 229
7.4.5 Controlling IEC timer functions in the ladder logic with Q boxes 230
7.4.6 Controlling IEC counter functions in the ladder logic with Q boxes . . . 231

7.5 Programming with EN/ENO boxes in the ladder logic 233
7.5.1 Positioning of EN/ENO boxes in the ladder logic 234
7.5.2 Transfer functions in the ladder logic . 235
7.5.3 Arithmetic functions for numerical values in the ladder logic 236
7.5.4 Arithmetic functions for time values in the ladder logic 236
7.5.5 Math functions in the ladder logic . 237

Table of contents

13

7.5.6 Conversion functions in the ladder logic . 238
7.5.7 Shift functions in the ladder logic . 239
7.5.8 Logic functions in the ladder logic . 240
7.5.9 Functions for strings in the ladder logic . 240

7.6 Functions for program flow control (LAD) . 241
7.6.1 Jump functions in the ladder logic . 242
7.6.2 Jump list in the ladder logic . 243
7.6.3 Jump distributor in the ladder logic . 244
7.6.4 Block end function in the ladder logic . 244
7.6.5 Block call functions in the ladder logic . 245

8 Function block diagram FBD . 246

8.1 Introduction . 246
8.1.1 Programming with function block diagram in general 246
8.1.2 Program elements of the function block diagram 248

8.2 Programming of binary logic operations (FBD) . 249
8.2.1 Scanning for signal states “1” and “0” . 250
8.2.2 Taking account of the sensor type in the function block diagram 251
8.2.3 AND function . 252
8.2.4 OR function . 253
8.2.5 Exclusive OR function . 254
8.2.6 Mixed binary logic operations . 254
8.2.7 T branch in the function block diagram . 255
8.2.8 Negate result of logic operation in the function block diagram 255
8.2.9 Edge evaluation of binary tags in the function block diagram 256
8.2.10 Validity checking of floating-point numbers in the function block

diagram . 257
8.2.11 Comparison functions in the function block diagram 258

8.3 Programming with standard boxes (FBD) . 258
8.3.1 Assignment and negated assignment . 259
8.3.2 Set and reset boxes . 260
8.3.3 Edge evaluation with pulse output in the function block diagram 261
8.3.4 Multiple setting and resetting (filling of bit field) in the function

block diagram . 262
8.3.5 Starting IEC timer functions in the function block diagram with

standard boxes . 262
8.4 Programming with Q boxes (FBD) . 264

8.4.1 Arrangement of Q boxes in the function block diagram 264
8.4.2 Memory boxes in the function block diagram . 265
8.4.3 Edge evaluation of logic operation result in the function block

diagram . 266
8.4.4 Example of binary scaler in the function block diagram 267
8.4.5 Controlling IEC timer functions in the function block diagram

with Q boxes . 267
8.4.6 IEC counter functions in the function block diagram 268

8.5 Programming with EN/ENO boxes (FBD) . 270
8.5.1 Positioning of EN/ENO boxes in the function block diagram 270
8.5.2 Transfer functions in the function block diagram 271

Table of contents

14

8.5.3 Arithmetic functions for numerical values in the function block
diagram . 273

8.5.4 Arithmetic functions with time values in the function block diagram . 273
8.5.5 Math functions in the function block diagram . 274
8.5.6 Conversion functions in the function block diagram 275
8.5.7 Shift functions in the function block diagram . 276
8.5.8 Logic functions in the function block diagram . 277
8.5.9 Functions for strings in the function block diagram 278

8.6 Functions for program flow control (FBD) . 279
8.6.1 Jump functions in the function block diagram . 280
8.6.2 Jump list in the function block diagram . 281
8.6.3 Jump distributor in the function block diagram 281
8.6.4 Block end function in the function block diagram 282
8.6.5 Block call functions in the function block diagram 282

9 Structured Control Language SCL . 284

9.1 Introduction to programming with SCL . 284
9.1.1 Programming with SCL in general . 284
9.1.2 SCL statements and operators . 286

9.2 Programming binary logic operations with SCL . 288
9.2.1 Scanning for signal states “1” and “0” . 288
9.2.2 Taking account of the sensor type for SCL . 289
9.2.3 AND function . 291
9.2.4 OR function . 291
9.2.5 Exclusive OR function . 292
9.2.6 Combined binary logic operations . 292
9.2.7 Negating the result of logic operation . 293

9.3 Programming memory functions with SCL . 294
9.3.1 Value assignment of a binary tag . 294
9.3.2 Setting and resetting . 294
9.3.3 Edge evaluation . 295

9.4 Programming timer and counter functions with SCL 296
9.4.1 IEC timer functions . 296
9.4.2 IEC counter functions . 297

9.5 Programming digital functions with SCL . 298
9.5.1 Transfer function, value assignment of a digital tag 298
9.5.2 Conversion functions . 299
9.5.3 Comparison functions . 301
9.5.4 Arithmetic functions . 301
9.5.5 Mathematical functions . 303
9.5.6 Word logic operations . 303
9.5.7 Shift functions . 304

9.6 Controlling the program flow with SCL . 305
9.6.1 Working with the ENO tag . 305
9.6.2 EN/ENO mechanism with SCL . 306
9.6.3 Control statements . 307
9.6.4 Block functions . 316

9.7 Working with source files . 319

Table of contents

15

9.7.1 General procedure . 319
9.7.2 Programming a logic block in the source file . 321
9.7.3 Programming a data block in the source file . 325
9.7.4 Programming a PLC data type in the source file 327

10 Basic functions . 328

10.1 Binary logic operations . 328
10.1.1 Introduction . 328
10.1.2 Scanning for signal states “1” and “0”, result of the scan 329
10.1.3 Negating the result of the logic operation, NOT contact 329
10.1.4 Testing floating-point tag, OK contact, OK box 330
10.1.5 AND function, series connection . 331
10.1.6 OR function, parallel connection . 332
10.1.7 Exclusive OR function, non-equivalence function 333

10.2 Memory functions . 334
10.2.1 Introduction . 334
10.2.2 Simple and negated coil, assignment . 334
10.2.3 Single set and reset . 335
10.2.4 Multiple setting and resetting . 336
10.2.5 Dominant setting and resetting, memory boxes 337

10.3 Edge evaluation . 338
10.3.1 Functional principle of an edge evaluation . 338
10.3.2 Edge evaluation of the result of the logic operation 340
10.3.3 Edge evaluation of a binary tag . 341
10.3.4 Edge evaluation with pulse output . 342

10.4 Time functions . 344
10.4.1 Introduction . 344
10.4.2 Pulse generation TP . 346
10.4.3 On-delay TON . 347
10.4.4 OFF delay TOF . 347
10.4.5 Accumulating ON delay TONR . 348

10.5 Counter functions . 349
10.5.1 Introduction . 349
10.5.2 Up counter CTU . 351
10.5.3 Down counter CTD . 352
10.5.4 Up-down counter CTUD . 353

11 Digital functions . 355

11.1 Transfer functions . 356
11.1.1 Introduction . 356
11.1.2 Copy tag, MOVE box for LAD and FBD . 356
11.1.3 Copy string, S_MOVE box for LAD and FBD . 357
11.1.4 Value assignments with SCL . 358
11.1.5 Copy data area (MOVE_BLK, UMOVE_BLK) . 360
11.1.6 Filling the data area (FILL_BLK, UFILL_BLK) . 361
11.1.7 Read and write the load memory (READ_DBL, WRIT_DBL) 362
11.1.8 Swap bytes (SWAP) . 363

11.2 Comparison functions . 364

Table of contents

16

11.2.1 Overview . 364
11.2.2 Comparison of two tag values . 364
11.2.3 Range comparison . 365

11.3 Arithmetic functions for numerical values . 366
11.3.1 Introduction . 366
11.3.2 Addition ADD . 367
11.3.3 Subtraction SUB . 367
11.3.4 Multiplication MUL . 367
11.3.5 Division DIV . 367
11.3.6 Division with remainder as result MOD . 368
11.3.7 Generation of absolute value ABS . 368
11.3.8 Negation NEG . 369
11.3.9 Decrement DEC, increment INC . 369

11.4 Arithmetic functions for time values . 369
11.4.1 Introduction . 369
11.4.2 Addition T_ADD . 371
11.4.3 Subtraction T_SUB . 371
11.4.4 Difference T_DIFF . 371
11.4.5 Combine T_COMBINE . 371

11.5 Mathematical functions . 372
11.5.1 Introduction . 372
11.5.2 Trigonometric functions SIN, COS, TAN . 373
11.5.3 Arc functions ASIN, ACOS, ATAN . 373
11.5.4 Formation of square SQR . 374
11.5.5 Extraction of square root SQRT . 374
11.5.6 Exponentiate to base e EXP . 374
11.5.7 Calculation of Napierian logarithm LN . 374
11.5.8 Extracting decimal places FRAC . 375
11.5.9 Exponentiation to any base EXPT . 375

11.6 Conversion functions (Conversion of data type) . 376
11.6.1 Introduction . 376
11.6.2 Conversion function CONV . 377
11.6.3 Conversion functions for floating-point numbers 378
11.6.4 Conversion functions SCALE_X and NORM_X . 381
11.6.5 Conversion function T_CONV . 383
11.6.6 Conversion function S_CONV . 383
11.6.7 Conversion functions STRG_VAL and VAL_STRG 385
11.6.8 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG 387
11.6.9 Conversion functions ATH and HTA . 389

11.7 Shift functions . 389
11.7.1 Introduction . 389
11.7.2 Shift to right (SHR) . 389
11.7.3 Shift to left (SHL) . 391
11.7.4 Rotate to right (ROR) . 391
11.7.5 Rotate to left (ROL) . 392

11.8 Logic functions . 392
11.8.1 Introduction . 392
11.8.2 Word logic operations (AND, OR, XOR) . 392
11.8.3 Invert (INV) . 394

Table of contents

17

11.8.4 Coding functions DECO and ENCO . 394
11.8.5 Selection functions SEL, MUX, and DEMUX . 395
11.8.6 Minimum selection MIN, Maximum selection MAX 397
11.8.7 Limiter LIMIT . 398

11.9 Processing of strings (Data type STRING) . 398
11.9.1 Output length of a string LEN . 399
11.9.2 Combine strings CONCAT . 400
11.9.3 Output left part of string LEFT . 400
11.9.4 Output right part of string RIGHT . 401
11.9.5 Output middle part of string MID . 401
11.9.6 Delete part of a string DELETE . 401
11.9.7 Insert string INSERT . 402
11.9.8 Replace part of string REPLACE . 403
11.9.9 Find part of string FIND . 403

11.10 Calculating with the CALCULATE box in LAD and FBD 404

12 Program flow control . 406

12.1 Jump functions . 406
12.1.1 Overview . 406
12.1.2 Absolute jump . 407
12.1.3 Conditional jump . 408
12.1.4 Jump list JMP_LIST . 409
12.1.5 Jump distributor SWITCH . 410

12.2 Block end function . 412
12.3 Calling of code blocks . 413

12.3.1 Introduction . 413
12.3.2 Calling a function FC . 413
12.3.3 Calling a function block (FB) . 415

12.4 EN/ENO mechanism . 417
12.4.1 EN/ENO mechanism with LAD and FBD . 418
12.4.2 EN/ENO mechanism with SCL . 418
12.4.3 EN/ENO for user blocks . 419

13 Online operation, diagnostics and debugging . 420

13.1 Connecting a programming device to the PLC station 421
13.1.1 IP addresses of the programming device . 421
13.1.2 Connecting the programming device to the PLC station 422
13.1.3 Assigning an IP address to the CPU module . 424
13.1.4 Switching on the online mode . 424

13.2 Transferring project data . 425
13.2.1 Loading project data for the first time . 425
13.2.2 Delta downloading of project data . 427
13.2.3 Error message following downloading . 428
13.2.4 Working with the memory card . 428
13.2.5 Processing blocks offline/online . 431
13.2.6 Comparing blocks offline/online . 432
13.2.7 Editing online project without offline project . 433
13.2.8 Uploading project data from the CPU . 434

Table of contents

18

13.3 Hardware diagnostics . 436
13.3.1 Status displays on the modules . 436
13.3.2 Diagnostics information . 437
13.3.3 Diagnostics buffer . 437
13.3.4 Diagnostics functions . 439
13.3.5 Online tools . 439
13.3.6 Further diagnostics information via the programming device 440

13.4 Testing the user program . 441
13.4.1 Introduction to testing with program status . 441
13.4.2 Program status with LAD and FBD . 442
13.4.3 Program status in SCL . 444
13.4.4 Monitoring with the PLC tag table . 445
13.4.5 Monitoring of data tags . 446
13.4.6 Testing with watch tables . 447
13.4.7 Monitoring tags using watch tables . 449
13.4.8 Modifying tags using watch tables . 450
13.4.9 Enable peripheral outputs and “Modify now” . 451
13.4.10 Forcing tags . 452

14 Distributed I/O . 455

14.1 Introduction, overview . 455
14.2 PROFINET IO . 456

14.2.1 PROFINET IO components . 456
14.2.2 Addresses with PROFINET IO . 457
14.2.3 Configuring PROFINET IO . 459
14.2.4 Real-time communication with PROFINET IO . 461

14.3 PROFIBUS DP . 462
14.3.1 PROFIBUS DP components . 462
14.3.2 Addresses with PROFIBUS DP . 465
14.3.3 Configuring PROFIBUS DP . 467
14.3.4 System functions for PROFINET IO and PROFIBUS DP 470

14.4 Actuator/sensor interface . 473
14.4.1 Components of actuator/sensor interface . 473
14.4.2 Configuring an AS-i master CM 1243-2 . 475
14.4.3 Configuring an AS-Interface . 476
14.4.4 Interface to user program . 477

14.5 Communication via Modbus . 477
14.5.1 Modbus RTU . 477
14.5.2 Modbus TCP . 480

15 Communication . 482

15.1 Overview . 482
15.2 Open user communication . 484

15.2.1 Basics . 484
15.2.2 Open user communication with TCP and ISO-on-TCP 485
15.2.3 Open user communication with the UDP protocol 487
15.2.4 Communication functions for open user communication 489
15.2.5 Configuring open user communication . 493

Table of contents

19

15.2.6 Configuring a PN interface with T_CONFIG . 495
15.3 S7 communication . 496

15.3.1 Basics . 496
15.3.2 Data structure for one-way data exchange . 496
15.3.3 Communication functions for one-way data exchange 497
15.3.4 Configuring S7 communication . 498

15.4 Point-to-point communication . 499
15.4.1 Introduction to point-to-point communication 499
15.4.2 Configuring the CM 1241 communication module 500
15.4.3 Point-to-point communication functions . 501
15.4.4 USS protocol for drives . 504

16 Visualization . 507

16.1 Introduction to visualization . 507
16.1.1 Overview of HMI Panels in STEP 7 Basic . 508
16.1.2 Creating a project with an HMI station . 510
16.1.3 Cross-references for HMI objects . 512

16.2 Creating HMI tags and area pointers . 513
16.2.1 Introduction to HMI tags . 513
16.2.2 Creating an HMI tag . 514
16.2.3 Creating an area pointer . 515

16.3 Configuring process screens . 517
16.3.1 Introduction to configuring process screens . 517
16.3.2 Working window for process screens . 518
16.3.3 Working with screen layers . 519
16.3.4 Working with templates . 519
16.3.5 Working with function keys . 520
16.3.6 Creating a new screen . 521
16.3.7 Configuring a screen change . 522
16.3.8 Working with objects in process screens . 522
16.3.9 Changing screen objects during runtime . 524
16.3.10 Basic objects for screen configuration . 524

16.4 HMI functions . 525
16.4.1 Input and display of process values . 525
16.4.2 Working with alarms . 528
16.4.3 Working with recipes . 535
16.4.4 Working with the user administration . 539

16.5 Completing HMI configuration . 542
16.5.1 Compiling the HMI configuration (Consistency test) 542
16.5.2 Simulation of HMI configuration . 542
16.5.3 Downloading configuration to the HMI station 543
16.5.4 Maintenance of the HMI station . 546

17 Appendix . 548

17.1 Integral and technological functions . 548
17.1.1 High-speed counter (HSC) . 548
17.1.2 Pulse generator . 554
17.1.3 Technology objects for motion control . 557

Table of contents

20

17.1.4 Technology objects for PID control . 561
17.2 Telephone network connections with TeleService . 564
17.3 Telecontrol with CP 1242-7 . 565
17.4 Web server . 567

17.4.1 Enable web server . 567
17.4.2 Reading out web information . 567
17.4.3 Standard web pages . 567

17.5 Data logging . 569
17.5.1 Introduction . 569
17.5.2 Using data logging . 569
17.5.3 Functions for data logging . 570

Index . 572

1.1 Overview of the S7-1200 automation system

21

1 Introduction

1.1 Overview of the S7-1200 automation system

The SIMATIC S7-1200 automation system consists of the four controllers S7-1211C,
S7-1212C, S7-1214C, and S7-1215C, which can exchange data with each other, with
SIMATIC HMI Basic Panels, or with other programmable controllers over SIMATIC
NET. STEP 7 (TIA Portal) is used to configure and program the devices (Fig. 1.1).

The SIMATIC S7-1200 controllers are programmable logic controllers (PLC) and
constitute the basis of the automation system. Four different controllers with
graded performances cover the low-end range of industrial controls.

SIMATIC HMI refers to the Human Machine Interface for operator control and
monitoring. The Basic Panels are designed such that they interact optimally with
SIMATIC S7-1200. The devices are available with display dimensions of 3.8, 5.7, 10.4
and 15 inches, and are operated using the touch screen. Except for the 15-inch
device, they have additional function keys.

Fig. 1.1 Components of the SIMATIC S7-1200 automation system

SIMATIC NET

SIMATIC HMI STEP 7
(TIA Portal)

SIMATIC S7-1200

Software for configuration
and programming

S
S

S S S

Components of the SIMATIC S7-1200 automation system

SIMATIC PLCs control the machine or plant

Networking for data exchange
and central online access

Operator control and monitoring func-
tions for control of plant during runtime

1 Introduction

22

SIMATIC NET links all SIMATIC stations, and allows trouble-free data exchange.
SIMATIC S7-1200 with PROFINET interface uses the Industrial Ethernet network to
exchange data with other PLC stations, HMI stations, and programming devices.
Communication modules expand the communication capabilities to other net-
works such as PROFIBUS DP, AS-Interface, or point-to-point coupling based on
RS232 or RS485.

The STEP 7 programming software provides the nesting function for Totally Inte-
grated Automation (TIA), the automation system with uniform configuration and
programming, data management, and data transfer. STEP 7 is used to configure
and parameterize the SIMATIC components, and STEP 7 is also used to generate and
debug the user program. The TIA Portal is the central user interface for manage-
ment of the tools and automation data. STEP 7 in the TIA Portal is available in the
versions STEP 7 Professional and STEP 7 Basic. Both versions can be used to config-
ure and program an S7-1200 station. This book describes the use of STEP 7 Basic.

1.1.1 SIMATIC S7-1200

SIMATIC S7-1200 is the modular microsystem for the lower and medium perfor-
mance range. The central processing unit (CPU) contains the operating system
and the user program. The user program is located in the load memory and is
power failure-proof. The parts of the user program relevant to execution are pro-
cessed in a work memory with fast access. Tags whose values are to be retained in
the event of a power failure or when switching off/on are stored in the retentive
memory (Fig. 1.2).

The user program can be transferred to the CPU using a plug-in memory card (MC)
– as an alternative to transfer via an online connection to the programming device.
The memory card can also be used as an external load memory or for updating the
firmware.

The connections to the plant or process are made by onboard inputs and outputs,
their number being determined by the CPU version. The onboard inputs and out-
puts are designed especially for operation of the integral high-speed counters
(HSC). The operating system additionally includes pulse generators with a pulse-
width modulated output and also the technology objects Axis for controlling step-
per motors and servo motors with pulse interface and PID Compact, a PID controller
with optimized self-tuning.

A signal board (SB) can be used to expand the onboard inputs and outputs. The
communication board (CB) creates a point-to-point connection for the CPU and the
battery board (BB) increases the power reserve of the integrated hardware clock to
about one year.

If further inputs and outputs are required, signal modules (SM) can be plugged
onto the CPU depending on its version. These are available for digital and analog
signals.

The PROFINET interface connects the CPU to the Industrial Ethernet subnet. The
programming device is connected to this interface if, for example, the user pro-

1.1 Overview of the S7-1200 automation system

23

gram is to be transferred online to the CPU and tested on the machine. Data is
exchanged with HMI stations and other automation devices via this interface.

If the CPU is only connected to one device over Ethernet, a standard or crossover
cable can be used. If more than two devices that only have a PROFINET interface are
networked, the connecting cables must be routed via a multiplier, e.g. the commu-
nication switch module (CSM). A CPU 1215 has two ports connected with a switch
so that they can be networked with the next programmable controller without an
interposed connection multiplier.

Communication modules (CM) permit the operation on further bus systems such
as PROFIBUS DP. Here, an S7-1200 station in a DP master system can be both DP
master and DP slave. An S7-1200 station can be the AS-Interface master on AS-Inter-
face and can control up to 62 AS-Interface field devices. The communication mod-
ule for the point-to-point connection is available with RS232 or RS485 interface, to
which, for example, a barcode or RFID reader can be connected.

Fig. 1.2 Connection options to a PLC station with CPU 1200

S

Connection options to a CPU 1200

Connection of
an HMI station
(Basic Panel).

Multiplication of Ethernet connec-
tion using the communication
switch module (CSM).

Connection of sensors, e.g.
buttons or limit switches, to the
onboard I/O, to the signal board
(SB) or to a signal module (SM).

Connection of a
further S7-1200
station or other
devices on the
basis of open user
communication.

A memory card (MC)
can be used to transfer
the control program
and upgrade the
operating system.

Connection of
a programming
device.

Connection of devices
using communication
modules (CM) with RS232
and RS485.

Connection of actuators, e.g.
contactors or lamps, to the
onboard I/O, to the signal board
(SB) or to a signal module (SM).

1 Introduction

24

1.1.2 Overview of STEP 7 Basic

STEP 7 is the central automation tool for SIMATIC. STEP 7 requires authorization
(licensing), and is executed on the current Microsoft Windows operating systems.
STEP 7 Basic can be used to configure the S7-1200 controllers and – with WinCC
Basic – the Basic Panels. Configuration is carried out in two views: the Portal view
and the Project view.

The Portal view is task-oriented.

In the Start portal you can open an existing project, create a new project, or migrate
an (HMI) project. A “project” is a data structure containing all the programs and da-
ta required for your automation task. The most important STEP 7 tools and func-
tions can be accessed from here via further portals (Fig. 1.3):

b In the Devices & networks portal you configure the programmable controllers,
i.e. you position the modules in a rack and assign them parameters.

b In the PLC programming portal you create the user program in the form of indi-
vidual sections referred to as “blocks”.

b The Visualization portal provides the most important tools for configuration and
simulation of Basic Panels.

b The Online & Diagnostics portal allows you to connect the programming device
online to a CPU. You can control the CPU's operating modes, and transfer and test
the user program.

The Project view is an object-oriented view with several windows whose contents
change depending on the current activity. In the Device configuration, the focal
point is the working area with the device to be configured. The Device view includes
the rack and the modules which have already been positioned (Fig. 1.4). A further

Fig. 1.3 Tools in the Start portal of STEP 7 Basic

1.1 Overview of the S7-1200 automation system

25

window – the inspector window – displays the properties of the selected module,
and the task window provides support by means of the hardware catalog with the
available modules. The Network view shows the networking between the devices
and permits the configuration of communication connections.

When carrying out PLC programming you edit the selected block in the working ar-
ea. You are again shown the properties of the selected object in the inspector win-
dow where you can adjust them. In this case, the task window contains the catalog
of statements with the available program elements and functions. The same applies
to the processing of PLC tags, to the online program test using watch tables, or to
configuration of an HMI device.

And you always have a view of the project tree. This contains all objects of the STEP
7 project. You can therefore select an object at any time, for example a program
block or watch table, and edit this object using the corresponding editors which
start automatically when the object is opened.

1.1.3 Three programming languages

You can select between three programming languages for the user program: lad-
der logic (LAD), function block diagram (FBD), and structured control language
(SCL). The user program can be structured into individual parts known as
“blocks”. The programming language is a property of a block, which means you
can use the programming language that is best suited to resolve the block func-
tion for every block in the user program.

Using the ladder logic, you program the control task based on the circuit diagram.
Operations on binary signal states are represented by serial or parallel arrange-
ment of contacts (Fig. 1.5). A current path is terminated by a coil. Complex func-
tions are represented by boxes which you handle like contacts or coils. Examples of
boxes are mathematical functions or functions for processing strings.

Using the function block diagram, you program the control task based on elec-
tronic circuitry systems. Binary operations are implemented by linking AND and OR

Fig. 1.4 Example of working area of device configuration

1 Introduction

26

functions and terminated by simple boxes (Fig. 1.6). Complex boxes are used to
handle the operations on digital tags, for example with mathematical functions or
functions for strings.

Structured control language is particularly suitable for programming complex
algorithms or for tasks in the area of data management. The program is made up of
SCL statements which, for example, can be value assignments, comparisons, or
control statements (Fig. 1.7).

Fig. 1.5 Example of binary operations in ladder logic representation

Fig. 1.6 Example of binary operations in function block diagram representation

Fig. 1.7 Example of SCL statements

1.1 Overview of the S7-1200 automation system

27

1.1.4 Execution of the user program

After the power supply has been switched on, the control processor checks the con-
sistency of the hardware and parameterizes the modules. A startup program is then
executed once, if present. The startup program belongs to the user program that
you program. Settings and initialization operations for the user program can be
present here.

The user program is usually divided into individual sections called “blocks”. The
organization blocks (OB) represent the interface between operating system and
user program. The operating system calls an organization block for specific events,
and the user program is then processed in it (Fig. 1.8).

Function blocks (FB) and functions (FC) are available for structuring the program.
Function blocks have a memory in which local tags are saved permanently, func-
tions do not have this memory.

Program statements are available for calling function blocks and functions (start of
execution). Each block call can be assigned inputs and outputs, referred to as
“block parameters”. During calling, tags can be transferred with which the pro-
gram in the block is to work. In this manner, a block can be repeatedly called with a
certain function (e.g. addition of three tags) but with different parameters sets
(e.g. for different calculations) (Fig. 1.9).

The data of the user program is saved in data blocks (DB). Instance data blocks have
a fixed assignment to a call of a function block; they are the tag memory of the func-
tion block. Global data blocks contain data which is not assigned to any block.

Fig. 1.8 Execution of the user program

Startup
program

Alarm and
error program

Main
program

Execution of the user program

Switching on

Updating of inputs
and outputs

Interruption
(alarm or error)

Operating mode
STARTUP

Operating system User program

Operating mode
RUN

OB

OB

FB
FC

FB
FC

FB
FC

FB
FC

FB
FC

FB
FC

OB

Interruption

1 Introduction

28

Following a restart, the control processor updates the input and output signals in
the process images and calls the organization block OB 1. The main program is
present here. Structuring is also possible (and recommended) in the main pro-
gram. Once the main program has been processed, the control processor returns to
the operating system, retains (for example) communication with the programming
device, updates the input and output signals, and then recommences with execu-
tion of the main program.

Cyclic program execution is a feature of programmable controllers. The user pro-
gram is also executed if no actions are requested “from outside”, such as if the con-
trolled machine is not running. This provides advantages when programming: For
example, you program the ladder logic as if you were drawing a circuit diagram, or
program the function block diagram as if you were connecting electronic compo-
nents. Roughly speaking, a programmable logic controller has characteristics like
those of a contactor or relay control: The many programmed operations are effec-
tive quasi simultaneously “in parallel”.

In addition to the cyclically executed main program it is possible to carry out inter-
rupt-controlled program execution. You must enable the corresponding interrupt
event for this. This can be a hardware interrupt, such as a request from the con-
trolled machine for a fast response, or a cyclic interrupt, in other words an event
which takes place at defined intervals.

The control processor interrupts execution of the main program when an event
occurs, and calls the assigned interrupt program. You can assign organization
blocks to certain events, and these blocks are then processed in such a case. Once
the interrupt program has been executed, the control processor continues execu-
tion of the main program from the point of interruption.

Fig. 1.9 Example of two block calls with different tags in each case

1.1 Overview of the S7-1200 automation system

29

1.1.5 Data management in the SIMATIC automation system

The automation data is present in various memory locations in the automation sys-
tem. Initially there is the programming device, referred to generally as the genera-
tion or engineering system. All automation data of a STEP 7 project is saved on its
hard disk. Configuration and programming of the project data with STEP 7 is car-
ried out in the main memory of the programming device (Fig. 1.10).

The automation data on the hard disk is also referred to as the offline project data.
Once STEP 7 has appropriately compiled the automation data, this can be
down-loaded to a programmable controller. The data downloaded into the user
memory of the CPU module are known as the online project data.

The user memory on the CPU is divided into three components: The load memory
contains the complete user program including the configuration data, the work
memory contains the executable user program with the current control data, and
the retentive memory contains the tags whose current values are saved power-fail-
ure-proof.

The memory card as a transfer card can transfer the user program to the CPU mem-
ory, or as a program card expand the CPU's internal load memory. When used as a
program card, the memory card remains inserted in the CPU during runtime.

Fig. 1.10 Data management in the SIMATIC automation system

Memory card

Work memoryRetentive memory

Main memory

Hard disk

Load memory

The load memory contains
the project data transferred

to the CPU. Together
with the current values of

the tags from the work
memory, they form the

online project data.
The control program
can be transferred to
the CPU by means of

the memory card.

The work memory
contains the executable

part of the control program
which is processed

during runtime.

The retentive memory
contains the tags whose

values are retained in the
event of a power failure

or when switching off/on.

The offline project
data is saved on

the hard disk.

All project data
is executed in the

programming device's
main memory.

Programming device CPU module

Transfer when
switching on

Saving the
project data

Data management in the SIMATIC automation system

Transfer with online connection

1 Introduction

30

1.1.6 Operator control and monitoring with process images

Procedures in the process (on the controlled machine) are manually controlled and
monitored using an HMI device. With the Basic Panels, a touch screen permits ac-
cess using control elements represented on the monitor. Control and display ele-
ments are combined in process images. A process image can map a plant, display
process sequences, output process values, or permit operator actions (Fig. 1.11).

The image sequence has a hierarchical structure. Commencing with a start screen
which is displayed when the HMI device is switched on, it is possible to select the
screens of the next level, from where the screens of the following level can be
selected, and so on. Displays can be changed manually using key or touch inputs, or
triggered by the user program.

Predefined objects are available for creating a screen, and can be inserted and
adapted according to your requirements. These can be static objects such as text or
graphics which do not change during process operation, or dynamic objects such
as texts, numerical values, trends and bar charts which change depending on pro-
cess values.

The functional scope of the Basic Panels also includes message control with bit and
analog messages, management of recipes, and user administration.

Fig. 1.11 Example of a process image in the configuration stage

1.2 Introduction to STEP 7 Basic for S7-1200

31

1.2 Introduction to STEP 7 Basic for S7-1200

1.2.1 Installing STEP 7

STEP 7 Basic V11 is a 32-bit applica-
tion, which executes with MS Win-
dows XP (Home with SP3 or Profes-
sional with SP3) or MS Windows 7
(Home Premium, Professional, Enter-
prise, or Ultimate, 32/64-bit). You
require administration rights in
order to install STEP 7, and to work
with STEP 7 you must at least be
logged-on as a main user.

The processor should at least be a Pentium 4 with 1.7 GHz or a comparable type.
A main memory of 1 GB is required for working with Windows XP, and should be
2 GB for Windows Vista. STEP 7 Basic requires approx. 2 GB on the hard disk.

An Ethernet interface (LAN adapter) is required on the programming device for the
online connection to a programmable controller or Basic Panel. If you wish to work
with a SIMATIC memory card, you require an SD card reader.

Installation is carried out using the setup program start.exe on the DVD. Deinstalla-
tion of STEP 7 Basic is carried out as usual in MS Windows using the Software pro-
gram in the Windows Control Panel. Parallel online use of STEP 7 Basic and STEP 7
has not been enabled.

1.2.2 Automation License Manager

You require a license (user authoriza-
tion) in order to use STEP 7. Licenses
are managed by the Automation
License Manager which is installed
together with STEP 7 Basic. The
license key for STEP 7 Basic is trans-
ferred to the hard disk during the
installation, and removed again from
the hard disk during deinstallation.

The license key is stored on the hard disk in specially identified blocks. To avoid un-
intentional destruction of the license key, you should observe the information for
handling license keys in the Help text of the Automation License Manager.

The Automation License Manager also manages the license keys of other SIMATIC
products, e.g. STEP 7 V5.4 and WinCC.

1 Introduction

32

1.2.3 Starting STEP 7 Basic

You start STEP 7 Basic either using the Start button of Windows
and Programs > Siemens Automation > TIA Portal V11, or by dou-
ble-clicking the icon on the Windows desktop. The Totally Inte-
grated Automation Portal is the user interface for STEP 7 and may
also contain other applications which use the same database. For
example, STEP 7 Basic V11 includes the WinCC Basic configuration software which
is displayed as an integrated “Visualization” editor in the Start portal.

1.2.4 Portal view

Following starting-up, STEP 7 Basic displays the Start portal. A portal makes avail-
able all functions and tools required for the respective range of tasks in the
portal view. The scope of the portals as well as the range of functions and tools de-
pends on the installed applications. The Start portal of STEP 7 Basic permit selection
of the following portals (Fig. 1.12):

b In the Devices & networks portal you can configure the hardware of the program-
mable controller, i.e. you select the hardware components, position them, and
set their properties. If several devices are networked, you can define the connec-
tions here.

b The PLC programming portal contains all the tools required for generating the
user program for a PLC station (programmable logic controller).

Fig. 1.12 Portal view: First steps after opening a project

1.2 Introduction to STEP 7 Basic for S7-1200

33

b In the Visualization portal you generate the operator control and monitoring
desktop for HMI stations. Here you can configure, for example, the process im-
ages, the control elements, and messages.

b Using the Online & Diagnostics portal you can connect the programming device
to a programmable controller, transfer and debug programs, and detect faults in
the automation system.

Additional functions included in the Start portal allow you to Create new project or
Open existing project. First steps informs you of what possibilities you have to con-
tinue the configuration after creating a project. Installed products provides an over-
view of further SIMATIC applications currently on the computer. You can call Help
in every portal.

1.2.5 Information system

The help function of STEP 7 provides
you when programming with compre-
hensive support for solving your auto-
mation task.

To call the help function, click on Help
in the Portal view or select the Help >
Display help command in the main
menu in the Project view. A window
appears with the Siemens Informa-
tion System (Fig. 1.13).

The online help is roughly divided ac-
cording to the project processing
steps: Configuration, parameteriza-
tion, and networking of devices, struc-
turing and programming of the user
program, visualization of processes,
and utilization of the online and diag-
nostics functions.

Readme provides general information
on STEP 7 and further information
which could no longer be included in
the online help.

A comprehensive description of all
available statements, including ex-
tended statements, can be found un-
der PLC programming > References.

Fig. 1.13 Information system
of STEP 7 Basic

1 Introduction

34

1.2.6 The windows of the project view

The project view shows all elements of a project in structured form in various pro-
cessing windows. You can move from the Portal view to the Project view using the
Project view link at the bottom left of the screen, or STEP 7 automatically switches to
the Project view depending on the selected tool.

Fig. 1.14 shows the windows of the Project view in an example of block program-
ming. Different window contents are displayed depending on the currently used
editor.

a Main menu and toolbar, shortcut menu

Underneath the title bar is the main menu with all menu commands. The menu
commands available for selection depend on the currently marked object; menu
commands which cannot be selected are displayed in gray. The same functionality
is available – somewhat user-friendlier – with the shortcut menu: if you click on an
object with the right mouse button, a window is opened with the currently select-
able menu commands. Underneath the main menu is the toolbar with the graphi-
cally represented “main functions”. The main menu and the toolbar are always
present in all editors.

Using Options > Customize in the main menu you can adapt the user interface.
For example, under “General” you can define the interface language in which
STEP 7 is used, and the mnemonics (the representation of the operands: “I” for in-
put (international), or “E” in German).

s Working window

In the center of the screen is the working window. The contents of the working win-
dow depend on the editor currently being used. In the case of device configuration,
the working window is divided in two: the objects (modules and stations) are dis-
played in graphic form in the top part, and in tabular form in the bottom part. When
programming the PLC, the top part of the working window contains the interface
description of the block, and the bottom part the program represented in LAD, FBD,
or SCL. You use the working window to configure the hardware of the automation
system, generate the user program, or configure the process screens for HMI
devices.

You can separate the working window completely from the project view so that it is
displayed as a separate window (“Release” icon in the title bar of the working win-
dow), and also insert it again (“Embed” icon). The “Maximize” icon closes all other
windows and displays the working window in maximum size.

d Inspector window

The inspector window underneath the working window shows the properties of the
objects marked in the latter, records the sequence of actions, and provides an over-
view of the diagnostics status of the connected devices.

1.2 Introduction to STEP 7 Basic for S7-1200

35

During configuration or programming you set the object properties in the inspec-
tor window, for example the addresses and symbol names of inputs and outputs,
the properties of the PROFINET interface, tag data types, or block attributes.

f Project tree

The project tree window is displayed with the same content for all editors.
Its hierarchical structure contains all project data and the required editors. With
the project open, it shows the folders for the PLC and HMI stations included in the
project, and further subfolders within these folders, e.g. for program blocks,
PLC tags and watch tables with a PLC station or e.g. the process images and the
HMI tags in the case of an HMI station.

A double-click on an object with project data automatically starts the associated ed-
itor. The project tree also includes editors such as “Add new device”, “Device config-
uration” or “Online & diagnostics” which you can start directly using a double-click.

The lower section of the project tree contains a details view of those objects which
are present in the hierarchy underneath the object marked in the project tree.

Fig. 1.14 Components of Project view using example of block programming

1 Introduction

36

g Task window

To the right of the working window is the task window with the task cards. This con-
tains further objects for processing in the working window. The contents of the task
window depend on the currently active editor. In the case of the hardware configu-
ration, for example the hardware catalog with the available components is shown
here, in the case of PLC programming the program elements catalog appears, with
online & diagnostics the online tools, and with the visualization the library for the
process image control and display elements.

You can also call the libraries in this window: global libraries supplied with STEP 7,
or the project library in which you can save reusable objects such as program
blocks, templates for process images, or control elements with special configura-
tions.

h Editor and status bar

At the bottom left of the Project view you can change to the Portal view. In the mid-
dle you can see the tabs of the open windows. Clicking on a tab results in its contents
being displayed in the top level of the working window. This makes it easy to change
quickly between different window contents. The far right of the status bar indicates
the current status of project processing.

1.2.7 Adapting the user interface

The language of the user interface can be changed. In the main menu select
Options > Settings and the “General” section. In the “Interface language” drop-down
list you can select the desired language from the installed languages. The texts of
the user interface are then immediately displayed in the new language. You can also
define here how the TIA Portal is to be displayed following the next restart.

You can show or hide the displayed window using the menu item View. You can al-
ways change the size of windows by dragging on the edge with the mouse. Windows
can be minimized into a symbol which appears in one of the navigation bars in the
left, bottom or right margin of the screen.

You can maximize the working window, or release it from the windows group and
display it as a separate window. The working window can be divided vertically or
horizontally, permitting you to view two working areas simultaneously.

You can change the width of table columns by dragging with the cursor in the table
header. In the case of columns that are too narrow, the entire content of the individ-
ual cells will appear as a tooltip when the cursor is briefly hovered over the relevant
field.

1.3 Editing a SIMATIC project

37

1.3 Editing a SIMATIC project

Fig. 1.15 shows all tools and data which can be of importance in an automation task.
Of prime importance is the Project which contains all the automation data required
for control and operation of the machine or plant. The project data is roughly divid-
ed into the data for the individual stations and the common project data which ap-
plies to all stations in the project.

A station can be a controller (PLC station) or an HMI device (HMI station). A project
can include several stations, but at least one station must be present. The data pres-
ent in a station is described further below. Common Project Data includes, for exam-
ple, centrally managed message texts or texts for multilingual projects.

A project library is created for each project. Objects which are used in several proj-
ects are combined in global libraries. Also relevant to a project is the programming
device design with interface modules (LAN adapters) and SD card readers.

Fig. 1.15 Project components, libraries and programming device design

Global Libraries

System Libraries

User Libraries

HMI Buttons-and-Switches

Online access

< User Library >

< Project Library >

Monitoring-and-control-objects

SIMATIC Card Reader

Documentation templates

Libraries delivered with STEP 7.

Libraries configured by users
themselves.

Contains the programming device
resources relevant to the project.

Contains all the data for a controller.

Contains text lists for system and user messages.

Contains all the data for an HMI device.

Contains document info, frames and cover sheets

PLC station

Common Data

HMI station

Documentation settings

Contains project texts, project languages and graphics.
Languages & resources

Stations

Project

Common Project Data

Project Library

All the data for the automation task is combined in
a project.

Stations can be controllers (PLC stations) or HMI devices
(HMI stations). A project includes at least one station.

Contains cross-station data.

Contains cross-station data compiled by the user.

Global libraries contain elements
for multiple use across projects.

Programming Device Design

1 Introduction

38

1.3.1 Structured representation of project data

The project tree in the Project view displays the project data and the programming
device configuration in a tree structure (Fig. 1.16).

The structure also includes the editors (tools) required for generating and editing
the data. The project tree does not include the project library. This is represented in
a task card together with the global libraries in the task window under “Libraries”.

You can replace the names shown in angle brackets by names more appropriate to
your automation task.

Fig. 1.16 Project structure in the project tree

< Project >

Online access

SIMATIC Card Reader

< HMI station >

Interface x1

< PLC station >

Common data

Interface x2

< PLC ... >

Languages&resources

Documentation settings

Add new device

Text lists

Project texts

Documentation
Information

Project languages

Frames

Project graphics

Cover pages

Devices & networks

Update accessible
devices

Add user-defined
card reader

Card reader

Adds a new PLC or HMI station to the project

Folder with the data of a found station

Text lists for user and system messages

List with project texts in different languages

Information for the documents to be printed

Selection of languages for display and message texts

Collection of frames

Collection of language-dependent graphic symbols

Collection of cover sheets

Starts the device and network configuration

Searches for stations connected to this interface module

Adds a card reader

Card reader present in the programming device

Folder for all data of an automation system

Folder for all LAN interface modules of the programming device

Folder for all SD card readers of the programming device

Folder for all data of an HMI station

LAN interface of programming device

Folder for all data of a PLC station

Folder for common data in the project

Further LAN interface modules if applicable

Folder for language-dependent objects

Folder for documentation settings

Project navigation with opened project

1.3 Editing a SIMATIC project

39

1.3.2 Project data and editors for a PLC station

If you add a PLC station (an S7-1200 controller) to the project, STEP 7 creates the
corresponding structure in the project data (Fig. 1.17). A PLC or HMI station is
always required for editing in a project so that STEP 7 can create the data structures
required for the PLC programming or HMI configuration. If you wish to write a user
program without previously selecting a specific CPU, you can select an “unspecified
CPU” from the hardware catalog and replace it later with a “real” CPU 1200 if nec-
essary.

Fig. 1.17 Structure of the project data for a PLC station

< PLC_12xxC >

Program blocks *)

Watch and force tables *)

PLC data types *)

Local modules

Technology objects

External source files *)

PLC tags *)

< Technology object_1 >

<Source file_1>

Device configuration

Add new block

Add new watch table

Add new data type

PLC_DataType_1

Add new object

Add new external file

Show all tags

Add new tag table

Default tag table [n]

Tag table_1 [m]

Online & diagnostics

< Block_1 >

Force table

< Watch table_1 >

Text lists

Program info

Starts the editor for the device configuration

Creates a new block and opens it

Main program (organization block OB 1)

Self-created block

Creates a new watch table and opens it

Creates a new PLC data type

Self-created PLC data type

Table with the forced tags

Self-created watch table

Station-specific texts for user and system alarms

Program structure, assignment list, memory utilization

Creates a new technology object and opens it

Imports a new source file

Displays the tags of all (sub-)tables

Adds a new tag table

Permanently available tag table with n tags

Self-created tag table with m tags

Starts the editor for the online connection and diagnostics

Folder for all data of a PLC station (name can be freely-selected)

Folder for all blocks of the user program

Folder for the force table and all watch tables

Folder for all PLC data types

Folder for the local modules of the PLC station

Folder for all technology objects

Folder for external source files (SCL)

Folder for all PLC tags (“symbol table”)

Self-created technology object

Imported source file

Data structure of a PLC station

*) Sub-groups can be generated

Main [OB 1]

1 Introduction

40

The user program which controls the machine or process is located in the Program
blocks folder. The program comprises blocks (separate program components)
which are either stored directly in the Program blocks folder or – if there is a large
number – in subfolders which you can create and configure yourself. The “Main”
block (the name is the symbol for the block and can be changed) is the organization
block OB 1 and is created automatically. The processing sequence of the blocks is
defined in the user program by “block calls” and is displayed by opening the Pro-
gram information object under Call structure.

The Technology objects folder contains the configuration data for the motion con-
trol objects (axes) and control loop objects (PID controllers).

SCL source files can be saved in the External sources files folder.

The PLC tags folder contains the assignment of the absolute address to the symbolic
address of global tags that are valid throughout the PLC station (inputs, outputs,
and bit memories).

The PLC data types folder contains user-defined, structured data types.

The force table and all created watch tables can be found in the Watch and force
tables folder. A watch table is used during testing of the user program. It contains
tags whose current value can be monitored and also changed during runtime. The
force tables can be used to set tags to fixed values that cannot be changed by the
program.

The program information shows the program structure (sequence and dependen-
cies of the block calls), the assignment list for inputs, outputs and bit memories,
and the memory usage.

Message texts are stored under Text lists. In the case of the user-defined text list, you
can specify the value ranges which trigger the messages and the associated texts;
with a system-defined text list, the contents are specified by STEP 7. Text lists creat-
ed under a PLC station contain station-specific texts, those created under a project
contain cross-station texts.

The Local modules folder contains all configured modules of the PLC station. Open-
ing a module initiates device configuration. The module properties are displayed in
the inspector window.

You start configuration of a station using the Device configuration editor which is
located in the first position in the project structure. There is no corresponding
folder for the data of the device configuration in the project tree. The configuration
data is located “behind” the Device configuration editor.

Online & diagnostics starts the editor for the online connection and online func-
tions. For example, you can use a (software) control panel to control the operating
modes of the CPU, to set the CPU's IP address and time, or read the CPU's diagnostics
buffer.

1.3 Editing a SIMATIC project

41

1.3.3 Creating and editing a project

Creating a new project

You can create a new project in the Portal view if you click in the Start portal on
Create new project. Assign a name to the project and set a path in which the project
is to be saved. After clicking the Create button, any project which is open is closed,
the new project is created, and the next steps displayed in the Start portal for selec-
tion:

b Configure a device
STEP 7 changes to the Devices & networks portal in which you can insert a new
CPU 1200 (a PLC station) into the project and open it for editing.

b Write PLC program
STEP 7 changes to the PLC programming portal in which you can edit the “Main”
block (organization block OB 1) or insert a new block and open it for editing. A
PLC station must first have been added to the project.

b Configure an HMI screen
STEP 7 changes to the Visualization portal in which you can create a new HMI sta-
tion or configure an already existing one. From this portal you start configura-
tion of the process images, editing of HMI tags and messages, and the simulator.

b Open the project view
STEP 7 changes to the Project view in which you can carry out the next steps
(insert and configure PLC stations, insert and program blocks, or insert and con-
figure HMI stations).

In the project tree you can create a new project using the Project > New menu com-
mand. Assign a name to the project in the dialog window, set the path in which the
project is to be saved, and click on the “Create” button.

Editing an existing project

You can open an existing project in either the Portal view or the Project view. Either
activate Open existing project in the Portal view or Project > Open in the Project view.
Select the desired project from the list of projects last used. Any project which is
open is closed, and the selected project is opened.

During editing in the Project view, you can save the entered project data using the
Project > Save or Project > Save as menu command. You can close the project using
Project > Close – following confirmation of whether changes are to be saved – with-
out exiting STEP 7.

You can delete a (closed) project from the hard disk – following confirmation –
using Project > Delete.

Compiling and downloading project data

Before project data can be downloaded to a station, it must be made readable for the
processor: it must be “compiled”. The project data is compiled station-by-station.

1 Introduction

42

The scope of the compilation can be varied depending on the type of station. For ex-
ample, the command from the Compile > Software pop-up menu only compiles
those software components which have been changed since the last compilation.

Printing project data

The project data can be printed in the form of a circuit manual. You can use the
documentation function to set the layout of the printout. Under Document settings
in the project tree, you adapt the existing template or create a new template, for
example in the sizes A3 or A4 in portrait or landscape format. You complete the text
fields under Document information (e.g. the title block). You can also position new
text fields or graphic symbols in the layout.

By means of the print preview or print output, you can specify the output with or
without cover page and as compact (abbreviated) or complete.

Converting a project from STEP 7 V10.5 to STEP V11

To convert a project created with STEP 7 V10.5, start STEP 7 V11 and select Project >
Open from the main menu. In the dialog window, click on the Browse button and
select the desired project from the file directory. In the open project folder, select
the file <Project_name>.ap10 and click the Open button. Confirm the conversion
messages with OK. The project is converted to Version V11, saved under the name
<Project_name>_<STEP7-Version>, and opened. You then compile every station and
clear any displayed faults and warnings.

1.3.4 Creating and editing libraries

Libraries are used to save reusable program components. These could include sta-
tions, blocks, PLC tag tables, process images or picture elements, for example. A
project library and global libraries are available. The libraries are displayed in a
task card of the task window.

A project library which you can fill with objects is automatically created when you
create a project. You can structure the contents of the project library using folders.
A project library is always opened, saved, and closed together with the project.

Components which can be used in multiple projects are saved in global libraries.
There are global system libraries which are supplied with STEP 7, and global user
libraries which you create yourself. A global library is opened, saved, and closed in-
dependent of the project. If you wish to use a global library simultaneously with
other users, the library must be opened as read-only.

2.1 S7-1200 station components

43

2 SIMATIC S7-1200 automation system

2.1 S7-1200 station components

A complete programmable controller including all I/O modules is referred to as a
“station”. This also includes distributed I/O modules connected to the CPU via a bus
system. An S7-1200 station comprises at least the CPU. Depending on the version,
it has digital and analog input/output channels and can be fitted with additional
input/output channels using a signal board (SB).

Depending on the type of CPU, up to eight signal modules can be plugged in which
expand the station by digital and analog input/output channels. A two-tier design is
possible using a 2-meter long extension cable.

The programming device is connected over Industrial Ethernet. Industrial Ethernet
can also be used to connect further SIMATIC stations or HMI devices to the CPU. Up
to three communication modules take over the connection to additional bus sys-
tems or to a point-to-point link.

Integral technological functions for measuring and counting tasks, closed-loop con-
trol, and motion control allow the CPU 1200 to be used in many complex machine
controls.

The SIMATIC Memory Card can be used to download configuration data, as an exter-
nal load memory, or for a firmware update.

Fig. 2.1 S7-1200 station with CPU S7-1214, two SMs (right) and one CM (left)

2 SIMATIC S7-1200 automation system

44

Mounting is on a standard 35 mm DIN rail either horizontally or vertically. Installa-
tion without a mounting rail is also possible. An extension cable (2 m long) enables
a two-tier design without changing the number of connectable signal modules.

Available accessories include an external power supply module, a connection multi-
plier (Ethernet switch), a TS Adapter, and two simulator modules. SIMATIC S7-1200
is also available as a SIPLUS version for particularly harsh environmental condi-
tions.

2.2 S7-1200 CPU modules

There are four types of CPU (CPU
1211, CPU 1212, CPU 1214, and CPU
1215), available in each case in the
versions DC/DC/DC, AC/DC/RLY,
DC/DC/RLY. The first item of data
refers to the module power supply
(DC = 24 V direct current, AC =
120/230 V alternating current). The
middle item of data refers to the
operating voltage of the onboard dig-
ital inputs (DC = 24 V direct current).
The last item of data refers to the type
of digital outputs (DC = 24 V direct
current electronic, RLY = up to 30 V
direct current or up to 250 V alternat-
ing current with relay).

The four CPU versions mainly differ in the supply voltage, the number of onboard
inputs and outputs, the memory size, and the expansion capability with signal
modules (Table 2.1).

The CPU 1215C can be integrated in STEP 7 Basic V11 with a hardware support pack-
age (HSP).

2.2.1 Integrated I/O

The digital inputs (DI) on the CPU module work with an operating voltage of 24 V
DC. Different numbers are available depending on the CPU version. The status of
the input signals is displayed by means of LEDs.

The digital outputs (DQ or DO) are available in electronic form (24 V DC and
0.5 A output current with a resistive load of 5 W) and as relay outputs (up to 30 V DC
and 2 A output current with a resistive load of 30 W or up to 250 V AC and 2 A output
current with a resistive load of 200 W). Different numbers of digital outputs are
available depending on the CPU version. The status of the output signals is dis-
played by means of LEDs.

Fig. 2.2 CPU 1214C DC/DC/DC

2.2 S7-1200 CPU modules

45

Table 2.1 Selected data of a CPU 1200 with Firmware V3.0

CPU 1211C CPU 1212C CPU 1214C CPU 1215C

User memory
Internal load memory *)
RAM
Retentive memory

1 MB
30 KB
10 KB

1 MB
50 KB
10 KB

4 MB
75 KB
10 KB

4 MB
100 KB
10 KB

Integrated I/Os
Digital inputs (DI)
Digital outputs (DO)

6 DI, 24 V DC
4 DO, 24 V DC
or relay

8 DI, 24 V DC
6 DO, 24 V DC
or relay

14 DI, 24 V DC
10 DO, 24 V DC
or relay

14 DI, 24 V DC
10 DO, 24 V DC
or relay

Analog inputs (AI)
Analog outputs (AO)

2 AI (10 bit)
–

2 AI (10 bit)
–

2 AI (10 bit)
–

2 AI (10 bit)
2 AO (10 bit)

Process images 1024 bytes inputs, 1024 bytes outputs

Bit memory 4096 bytes 8192 bytes

Expansion with
 A board (SB, CB, BB)
 Signal modules (SM)
 Communication
 modules (CM)

1
None

3

1
2

3

1
8

3

1
8

3

High-speed counter
as single-phase counter
 with integrated I/O

 with standard SB
 with high-speed SB

3 with 100 kHz

2 with 30 kHz
2 with 200 kHz

3 with 100 kHz
1 with 30 kHz
2 with 30 kHz
2 with 200 kHz

3 with 100 kHz
3 with 30 kHz
–
–

3 with 100 kHz
3 with 30 kHz
–
–

as A/B counter
 with integrated I/O

 with standard SB
 with high-speed SB

3 with 80 kHz

2 with 20 kHz
2 with 160 kHz

3 with 80 kHz
1 with 20 kHz
2 with 20 kHz
2 with 160 kHz

3 with 80 kHz
3 with 20 kHz
–
–

3 with 80 kHz
3 with 20 kHz
–
–

Pulse generators
 with integrated I/O
 with standard SB
 with high-speed SB

4
100 kHz
20 kHz
200 kHz

Pulse outputs **)
Inputs for pulse catch

4
6

4
8

4
14

4
14

Real-time clock buffer Typically 10 days, can be increased up to one year with a battery board

PROFINET connection 1 2 with switch

Temporary local data /
nesting depth
Startup + main program
Interrupt/error processing

16 KB / 16 levels
4 KB / 4 levels

Execution time
for binary functions
for digital functions
for floating-point functions

0.085 µs / instruction
1.7 µs / instruction
2.3 µs / instruction

*) Expandable up to SD card size
**) A digital signal board is required for CPU versions with relay outputs

2 SIMATIC S7-1200 automation system

46

Each CPU has two analog input channels (AI) for 0 to 10 V. The resolution is 10 bits.
The analog value can be processed in the user program in the numerical range from
0 to 27 648. The CPU 1215 has two additional analog output channels (AO) for 0 to
20 mA. The resolution is 10 bits. The analog value can be processed in the user pro-
gram in the numerical range from 0 to 27 648.

Further details can be found in Section 2.3.3 “Properties of the I/O connections” on
page 50.

The terminal blocks for the inputs and outputs can be removed from all modules
without having to disconnect the wiring.

The CPU module does not have a mode selector for switching on/off. The operating
modes (RUN, STOP) are set online using the programming device.

2.2.2 PROFINET connection

The CPU is connected to an Ethernet network over the
PROFINET interface. The connection (port) takes the
form of an RJ45 socket. The protocols Transmission
Control Protocol (TCP) in accordance with RFC 793,
ISO Transport over TCP (ISO-on-TCP) in accordance
with RFC 1006, and User Datagram Protocol (UDP) in
accordance with RFC 768 are supported. The connec-
tion is able to automatically recognize a transmission
rate of 10 or 100 MBit/s (autosensing). Either a stan-
dard Ethernet cable or a crossover cable can be used
for the network.

The CPU can be connected, for example, to a program-
ming device, an HMI device, or other SIMATIC stations
over the PROFINET connection. The CPU 1215C has two
RJ45 sockets, which are connected with a switch. The
next device can therefore be connected directly to the
Ethernet network from the second connection. The
other CPUs have only one RJ45 socket. Here an external switch (connection multi-
plier) such as the CSM 1277 Compact Switch Module is required when networking
several devices.

As of firmware version 2.0, a PROFINET IO controller is integrated in the CPU oper-
ating system. The CPU can thus control distributed I/O via Industrial Ethernet with
PROFINET IO. More detailed information can be found in Chapter 14.2 “PROFINET
IO” on page 456.

Fig. 2.3
PROFINET connection

2.2 S7-1200 CPU modules

47

2.2.3 Status LEDs

The current operating mode of the CPU is indicated by LEDs on
the front of the module:

RUN/STOP Continuous yellow light in STOP mode
Continuous green light in RUN mode
Flashing light in STARTUP mode

ERROR Flashing red light in event of error
Continuous red light if hardware is faulty

MAINT Continuous yellow light with maintenance
request

After switching on, the CPU is in STARTUP mode. It runs through
test routines, carries out parameter settings, and executes the
startup program. The CPU then changes to the RUN status and
executes the user (main) program – this is the “normal” operat-
ing status. The CPU returns to the STOP mode if it detects a
“serious” error, if it executes a corresponding program state-
ment, or if it is specifically set to this state e.g. by the programming device. The user
program is not executed in the STOP mode, but the CPU is still able to communi-
cate, facilitating downloading of parts of the user program, for example.

The ERROR LED flashes when an error has been detected. It lights up permanently
if the hardware is faulty. The MAINT LED lights up continuously to indicate that a
previously configured maintenance request is now present. All LEDs flash if the
firmware of the CPU module is faulty.

2.2.4 SIMATIC Memory Card

The SIMATIC Memory Card can be used as a program card,
a card for transferring data, or as a data medium for firm-
ware updates. As a program card it is required for runtime
operation of the CPU, in the other cases it is not required for
operation.

There are two versions of the SIMATIC Memory Card: with a
storage capacity of 2 MB or 24 MB. It has a special ID which is
necessary for use in a CPU 1200.

2.2.5 Expansions of the CPU

Signal board (SB)

A signal board (SB) expands the onboard I/O without changing the dimensions of
the CPU. The associated slot is located on the front of the CPU.

Signal boards are available with 24 V and 5 V digital inputs and outputs, which can
be operated at a frequency of up to 200 kHz (Table 2.2). The counting frequency of

Fig. 2.4 LED dis-
plays on the CPU

Fig. 2.5 SIMATIC
Memory Card

2 SIMATIC S7-1200 automation system

48

the high-speed counters can thus be increased. The
analog inputs allow the measurement of a voltage
or current with a resolution of 11 bits + sign. With
a Pt 100/200/500/1000 (RTD) resistance tempera-
ture sensor or with Type J and K thermocouples
(TC), temperatures can be measured with a resolu-
tion of 15 bits + sign. The list of signal boards is
rounded off by one with an analog output channel
(12 bit, ±10 V or 0 to 20 mA).

Communication Board (CB)

A Communication Board (CB) expands the communication connections without
changing the dimensions of the CPU. The associated slot is located on the front of
the CPU.

The CB 1241 RS485 is available for serial data exchange via a point-to-point con-
nection. The protocols for ASCII, USS drives, and Modbus RTU are already imple-
mented; additional protocols can be subsequently loaded.

Battery board (BB)

With the BB 1297 battery board, the buffered runtime of the real-time clock can be
extended from a typical 10 days to up to one year, without changing the dimensions
of the CPU. The associated slot is located on the front of the CPU.

Table 2.2 Selection of signal boards

Digital inputs
SB 1221 DC
SB 1221 DC

6ES7 221-3AD30
6ES7 221-3BD30

DI 4 5 V DC, 200 kHz
DI 4 24 V DC, 200 kHz

Digital outputs
SB 1222 DC
SB 1222 DC

6ES7 222-1AD30
6ES7 222-1BD30

DO 4 5 V DC / 0.1 A, 200 kHz
DO 4 24 V DC / 0.1 A, 200 kHz

Digital inputs and outputs
SB 1223 DC/DC
SB 1223 DC/DC
SB 1223 DC/DC

6ES7 223-0BD30
6ES7 223-3AD30
6ES7 223-3BD30

DI 2 24 V DC, DO 2 24 V DC / 0.5 A, 30 kHz
DI 2 5 V DC, DO 2 5 V DC / 0.1 A, 200 kHz
DI 2 24 V DC, DO 2 24 V DC / 0.1 A, 200 kHz

Analog inputs
SB 1231 AI
SB 1231 RTD
SB 1231 TC

6ES7 231-4HA30
6ES7 231-5PA30
6ES7 231-5QA30

AI 1 12 bit, ±10/±5/±2.5 V or 0 to 20 mA
RTD 1 16 bit, type: Platinum (Pt)
TC 1 16 bit, types: J, K, ±80 mV

Analog output
SB 1232 AO 6ES7 232-4HA30 AO 1 12 bit, ±10 V or 0 to 20 mA

Fig. 2.6 Signal Board 1223

http://pnap.ir/siemens-s71200-price-list/

2.3 Signal modules (SM)

49

A commercially available CR1025 battery (not included) is used for voltage buffer-
ing. The maintenance LED on the board indicates when it is necessary to change the
button cell.

2.3 Signal modules (SM)

Signal modules are input/output modules which extend
the integrated I/O. Depending on the CPU version, either
none, two or eight modules can be plugged onto the
right of the CPU.

A two-tier design is possible using a 2-meter long exten-
sion cable. But the number of modules which can be
used is not changed as a result.

2.3.1 Digital I/O modules

Digital modules are signal converters for binary process
signals. The CPU can use input modules to scan operat-
ing modes of the machine or plant, and output modules
for intervention.

Input modules convert external signals of 24 V DC into
signals with an internal level. Output modules convert
the internal signal level into 24 V DC (electronic outputs) or are designed as relay
outputs. Using direct current, a relay can switch maximum 30 W, while with alter-
nating current it can switch 200 W. There are signal modules with one or two bytes
corresponding to 8 or 16 signals (Table 2.3).

Table 2.3 Selection of digital I/O modules

Digital inputs
SM 1221 DC
SM 1221 DC

6ES7 221-1BF30
6ES7 221-1BH30

DI 8 24VDC
DI 16 24VDC

Digital outputs
SM 1222 DC
SM 1222 DC
SM 1222 RLY
SM 1222 RLY
SM 1222 RLY

6ES7 222-1BF30
6ES7 222-1BH30
6ES7 222-1HF30
6ES7 222-1HH30
6ES7 222 1XF30

DO 8 24VDC / 0.5 A
DO 16 24VDC / 0.5 A
DO 8 relay 30 V DC, 250 V AC / 2 A
DO 16 relay 30 V DC, 250 V AC / 2 A
DO 8 relay 30 V DC, 250 V AC / 2 A (change-over contact)

Digital inputs/outputs
SM 1223 DC/DC
SM 1223 DC/DC
SM 1223 DC/RLY
SM 1223 DC/RLY
SM 1223 AC/RLY

6ES7 223-1BH30
6ES7 223-1BL30
6ES7 223-1PH30
6ES7 223-1PL30
6ES7 223-1QH30

DI 8 24VDC, DO 8 24VDC / 0.5 A
DI 16 24VDC, DO 16 24VDC / 0.5 A
DI 8 24VDC, DO 8 relay 30VDC, 250 V AC / 2 A
DI 16 24VDC, DO 16 relay 30VDC, 250 V AC / 2 A
DI 8 125/250 V AC, DO 8 relay 30 V DC, 250 V AC / 2 A

Fig. 2.7 SM 1221 DI16
signal module

http://pnap.ir/siemens-s71200-price-list/

2 SIMATIC S7-1200 automation system

50

2.3.2 Analog input/output modules

Analog modules are signal transducers for analog pro-
cess signals. The CPU can use these modules to process
analog variables when these have been converted by an-
alog input modules into digital values. The CPU can also
continuously supply actuators with analog setpoints
which have been generated from the specified digital
values by analog output modules.

One “channel” is occupied on the module by each analog
value (e.g. measured value or setpoint). Analog modules
are available with 2, 4 or 8 channels corresponding to 4,
8 or 16 bytes (Table 2.4). A digitized analog value is rep-
resented internally as a 16-bit fixed-point number (data
type INT). Analog modules can output diagnostic data
concerning the module status or when limit values are
reached.

2.3.3 Properties of the I/O connections

Digital input modules convert the external signal voltage (24 V DC or 125/230 V
AC) into the internal signal level. The connected sensor must be within the permis-
sible voltage range and provide the required input current with the signal status “1”
so that the module can switch reliably.

The input signals are filtered in addition, i.e. interferences on the lines are sup-
pressed and glitches eliminated. The filtering results in the input signals being de-
layed. The input delay can be set. A compromise must be found here between inter-
ference resistance (long delay) and fast signal recording (short delay).

Depending on the design, a digital input channel on the CPU module can trigger a
process interrupt when there is a change in signal status, or be activated as a

Table 2.4 Selection of analog I/O modules

Analog inputs
SM 1231 AI
SM 1231 AI
SM 1231 AI
SM 1231 RTD
SM 1231 RTD
SM 1231 TC
SM 1231 TC

6ES7 231-4HD30
6ES7 231-4HF30
6ES7 231 5ND30
6ES7 231-5PD30
6ES7 231-5PF30
6ES7 231-5QD30
6ES7 231-5QF30

AI 4 13 bit, ±10/±5/±2.5 V or 0 to 20 mA
AI 8 13 bit, ±10/±5/±2.5 V or 0 to 20 mA
AI 4 16 bit, ±10/±5/±2.5/±1.25 V or 0 to 20/4 to 20 mA
RTD 4 16 bit, 0 to 150/300/600 ; (Pt, Ni, Cu)
RTD 8 16 bit, 0 to 150/300/600 ; (Pt, Ni, Cu)
TC 4 16 bit, ± 80 mV; types J, K, T, E, R, S, N, C, TXK/XK(L)
TC 8 16 bit, ± 80 mV; types J, K, T, E, R, S, N, C, TXK/XK(L)

Analog outputs
SM 1232 AO
SM 1232 AO

6ES7 232-4HB30
6ES7 232-4HD30

AO 2 14 bit, ±10 V or 0 to 20 mA
AO 4 14 bit, ±10 V or 0 to 20 mA

Analog inputs/outputs
SM 1234 AI/AO 6ES7 234-4HE30 AI 4 13 bit, ±10/±5/±2.5 V or 0 to 20 mA,

AO 2 14 bit, ±10 V or 0 to 20 mA

Fig. 2.8 SM 1234 AI/AO
signal module

http://pnap.ir/siemens-s71200-price-list/

2.3 Signal modules (SM)

51

“pulse pickup”. The latter case means that a signal pulse is detected on such an in-
put channel which is shorter than the program execution time (cycle time).

Some of the input channels on the CPU module can be used as high-speed inputs
which control the integral high-speed counter (HSC). Frequencies are possible up
to 100 kHz (onboard on CPU module) or up to 200 kHz (on the signal board).

Digital output modules enable the CPU to intervene in the controlled process.
They are signal transducers which convert the internal signal statuses into the volt-
ages and currents used in the process. The digital output modules contain a data
memory which receives the signals sent to the module and passes them on to an
amplifier. The latter then provides the required switching capacity.

When selecting the digital modules it is necessary to take into consideration the op-
erating frequency (the operating delay), the load rating per channel, the total load
rating, and – with electronic output channels – the residual current. It is not per-
missible to fall below the residual current with a signal status “0” since otherwise
the controlled device will no longer respond to a switch-off signal.

The digital output modules are disabled when in the STOP and STARTUP statuses.
In this case they deliver either a configured substitute value, e.g. signal status “0”
or retain the last set value.

Some of the electronic output channels on the CPU module can be controlled as
“pulse outputs” by the integral pulse generators (pulse train output PTO or pulse-
width modulation PWM). Frequencies are possible up to 100 kHz (on the CPU) or up
to 200 kHz (on the signal board). The pulse generators are also used by the technol-
ogy object Axis.

Analog input modules convert analog variables occurring in the process into a
digital value by means of an integration procedure. The measuring ranges ±10 V,
±5 V, ±2.5 V, ±1.25 V, and 0 to 20 mA or 4 to 20 mA correspond with a resolution of
12 bits + sign in the internal representation to a numerical value from von –27 648
to +27 648. In addition, there is overshoot or undershoot range and the overflow or
underflow. Overflow and underflow can trigger a diagnostics event.

Depending on the interference voltage suppression for 400, 60, 50 or 10 Hz, the re-
sponse times without smoothing are 4, 18, 22 or 100 ms. The measured values can
be smoothed by digital filtering. Smoothing of the analog signal can be set to
“strong” (over 32 cycles), “medium” (16 cycles), “weak” (4 cycles) or “none” (1 cycle).

Analog output modules convert the internal digital values into the analog vari-
ables required in the process. In the voltage range ±10 V the resolution is 14 bits
with a rated range from –27 648 to +27 648. The permissible load impedance is
1000 . In the current range from 0 to 20 mA the resolution is 13 bits with a rated
range from 0 to 27 648. The permissible load impedance in this case is 600 . The
analog output modules are disabled when in the STOP and STARTUP statuses. In
this case they deliver either a configured substitute value or retain the last set
value.

2 SIMATIC S7-1200 automation system

52

2.4 Communication modules (CM)

The communication modules (CM) support the CPU in
communication tasks. They establish the physical con-
nection to a communication partner, take over estab-
lishment of the connection and data transport on this,
and provide the required communications services for
the operating system of the CPU and the user program.

The communication modules are plugged onto the
CPU from the left, seen from the front. Operation of up
to three communication modules is possible for all
CPUs (Table 2.5).

2.4.1 Point-to-point communication

The CM 1241 communication modules allow fast serial data transfer via a point-to-
point connection. The modules are available in two designs, depending on the
physical transmission properties: with RS232 interface and with RS422/485 inter-
face. There are standard protocols for point-to-point communication (ASCII), Mod-
bus communication, and the universal serial interface (USS drive protocol).

The point-to-point communication is suitable for connecting, for example, print-
ers, modems, or barcode readers to the programmable controller.

2.4.2 PROFIBUS DP

The CM 1243-5 communication module connects an S7-1200 station to PROFIBUS
DP as DPV1 master according to IEC 61158. The module can control up to 16
PROFIBUS DP slaves. Transmission rates of up to 12 Mbit/s are supported. The CM
1243-5 communication module also allows a programming device or an operator
station to be connected to the S7-1200 station. Data can be exchanged with other S7
stations via the S7 communication using the system functions GET and PUT.

Table 2.5 Communication modules with functions and properties

CM 1241 RS232
CM 1241 RS422/485

6ES7 241-1AH30
6ES7 241-1CH31

Point-to-point connection via RS 232
Point-to-point connection via RS 422/485

CM 1242 PROFIBUS
CM 1243 PROFIBUS

6GK7 242-5DX30
6GK7 243-5DX30

PROFIBUS DP slave
PROFIBUS DP master

CM 1243 AS-i
DCM 1271 AS-i

3RK7 243-2AA30
3RK7 271-1AA30

AS-Interface master
AS-i data decoupling module

CP 1242 GPRS 6GK7 242-7KX30 Connection to a GSM/GPRS radio network

Fig. 2.9 CM 1241 RS485
communication module

http://pnap.ir/siemens-s71200-price-list/

2.4 Communication modules (CM)

53

The CM 1242-5 communication module connects an S7-1200 station to PROFIBUS
DP as DPV1 slave according to IEC 61158. Transmission rates of up to 12 Mbit/s are
supported. The connection to PROFIBUS DP takes place as an “intelligent” DP slave
that can exchange data with the DP master via a configurable user data interface.

2.4.3 Actuator/sensor interface

The CM 1243-2 communication module connects an S7-1200 station with the AS-
Interface cable as AS-i master according to AS-Interface specification V3.0. The
module can control up to 62 AS-i slaves. A standard power supply with 24 V is used
in conjunction with the DCM 1271 data decoupling module.

By connecting to the AS-Interface, the available inputs and outputs for an S7-1200
station can be significantly increased (per CM module a maximum of 496 digital
inputs and 496 digital outputs or 31 standard analog slaves with up to 4 channels
or 62 A/B analog slaves with up to 2 channels).

The CM 1243-2 communication module is included with a hardware support pack-
age (HSP) in the STEP 7 V11 hardware catalog.

2.4.4 GPRS transmission

The CP 1242-7 communication module connects an S7-
1200 station with the GSM/GPRS mobile network (Global
System for Mobile Communications/General Packet
Radio Service, a packet-oriented service for data trans-
mission in digital mobile networks). Data can be
exchanged wirelessly with a transmission rate of 86
Kbit/s downlink and 43 Kbit/s uplink. The CP1242-7 mod-
ule can receive and send text messages (Short Message
Service). The partner can be a mobile phone or another
S7-1200 station. Operation is possible with a standard
mobile phone contract.

In conjunction with the Telecontrol Server Basic software,
the GPRS module forms a telecontrol system on the basis
of mobile wireless communication. Data transmission is
possible between the remote control center and an S7-
1200 station or between two S7-1200 stations with a
“detour” via the remote control center. For direct data
transmission between two S7-1200 stations, the module must be assigned a fixed
IP address.

The CP 1242-7 communications processor can also set up a TeleService connection.
This allows the loading of project data and the retrieval of diagnostic data via the
GPRS network. The connection between the programming device and the GPRS net-
work can be established via a telecontrol server or a TeleService gateway. The CP
1242-7 communication module is included with a hardware support package (HSP)
in the STEP 7 V11 hardware catalog.

Fig. 2.10 CP 1242-7
with antenna

2 SIMATIC S7-1200 automation system

54

2.5 Further modules

2.5.1 Compact switch module (CSM)

The connection multiplier CSM 1277 unmanaged allows
simple design of an Ethernet network. It includes
four RJ45 sockets with which an S7-1200 station can be
connected to other devices over Industrial Ethernet,
for example to other programmable controllers or to
HMI stations.

The connection multiplexer is designed for 10/100 MBit/s.
It automatically detects the data transfer rate (autosens-
ing) and can be used with standard or crossover cables
(autocrossover function).

Status LEDs indicate the existing power supply, the port
status, and the current data traffic. The interface multi-
plier does not require configuration.

2.5.2 Power module (PM)

The power supply for the CPU module is either
120/230 V AC with 50/60 Hz or 24 V DC. The CPU
derives the required internal voltages from this
voltage.

If the onboard power supply is insufficient, the
external PM 1207 power supply can be used.
The input voltage is 120/230 V AC with a current
consumption of 1.2/0.7 A. 24 V DC with 2.5 A is
available at the output.

A status LED on the front indicates that the 24 V
output voltage is present. The PM 1207 does not
require configuration.

2.5.3 TS Adapter IE Basic

With TeleService, remote servicing of SIMATICS7 automation systems or HMI
devices is possible using the programming device over a fixed line or wireless net-
work. TeleService extends the connection from the programming device via the
telephone network to the programmable controllers. The functions to be
performed, such as programming, are completed using the same tools and func-
tionality as if the job was being done locally.

The TS Adapter IE Basic consists of the basic unit and a TS module with the modem
or an interface for connecting to an external modem. The basic unit has an Ethernet
interface for connecting to a programming device or programmable controller. The
available TS modules are listed in the Table 2.6. The TS-Adapter IE Basic is parame-
terized with TeleService in the TIA Portal.

Fig. 2.11 CSM 1277 com-
pact switch module

Fig. 2.12 PM 1207 power module

2.6 SIPLUS S7-1200

55

The TS Adapter IE Basic can establish a modem connection to a dial-up server, for
example, an Internet service provider. The system function TM_MAIL enables send-
ing an email from the user program.

2.5.4 SIM 1274 simulator

The simulator module is used to debug the
user program. It is connected to the terminal
block of the CPU instead of the input signals
from the machine.

The simulator module is available with 8
switches (for CPU 1211 and CPU 1212) and
with 14 switches (for CPU 1214 and CPU
1215). The power supply is 24 V DC.

2.6 SIPLUS S7-1200

SIPLUS is the product range with hard-
ened components for use in harsh envi-
ronments. The SIPLUS S7-1200 range is
offered in addition to the standard
SIMATIC S7-1200 range.

Standard devices which have been special-
ly converted and “refined” for the respec-
tive application are used as the basis for
the SIPLUS components. Possible refined
features include:

b Extended ambient temperature range
from –25 °C to +70 °C

b Condensation, increased humidity,
increased degree of protection
(dust, water)

b Extreme loading by media, e.g. toxic atmospheres

b Increased mechanical load, increased electrical immunity

Table 2.6 Basic unit and connection modules for teleservice

TS Adapter IE Basic 6ES7 972-0EB00 Basic unit

TS module modem
TS module ISDN
TS module RS232

6ES7 972-0MM00
6ES7 972-0MD00
6ES7 972-0MS00

Analog modem for connection to the analog telephone network
Terminal adapter for connection to the ISDN network
RS232 interface for connecting an external modem

TS module GSM 6GK7 972-0MG00
6NH9 860-1AA00

Wireless modem for connection to the GSM/GPRS network
Quadband GSM antenna

Fig. 2.13 SIM 1274 simulator

Fig. 2.14 SIPLUS CPU 1211C AC/DC/RLY

2 SIMATIC S7-1200 automation system

56

b Voltage ranges deviating from the standard

b Ambient conditions on track vehicles

b Specific sector solutions

SIPLUS modules are manufactured on request for the desired environmental con-
ditions. Please therefore note the technical specifications for the module con-
cerned.

Configuration of SIPLUS modules

The functionality of a SIPLUS module is the same as that of the corresponding stan-
dard module; the Order No. (MLFB, machine-readable product designation) com-
mences with 6AG1… . SIPLUS modules are not included with their Order Nos. in the
hardware catalog of the STEP 7 Basis programming software.

Since the SIPLUS modules have the same functions as existing modules, you can
use the corresponding equivalent type (the standard module) when configuring.
This equivalent type can be found on the device's nameplate, in the SIPLUS data
sheets, and on the Internet in the Siemens A&D Mall. For example, the SIPLUS CPU
1211C shown in Fig. 2.14 with order number 6AG1211-1BD30-2XB0 is based on the
S7-CPU 1211C with order number 6ES7 211-1BD30-0XB0.

3.1 Introduction

57

3 Device configuration

3.1 Introduction

Device configuration entails planning the hardware design of your automation sys-
tem. Configuration is carried out offline without a connection to the CPU. You can
use this tool to add PLC stations to a project and equip these with modules which
you then address and parameterize. You also use this tool to carry out the network-
ing of PLC stations or the creation of distributed I/O stations.

This chapter primarily describes the configuration of an individual PLC station
with a CPU 1200 controller and provides an overview of the networking options.
Configuration of the distributed I/O is described in Chapters 14.2 “PROFINET IO” on
page 456 and 14.3 “PROFIBUS DP” on page 462.

Start

You can start the device configuration in the Portal view when setting up a new
project if the Open device view checkbox is activated following addition of a CPU.
When opening an existing project, start the device configuration by selecting Con-
figure a device.

In the Project view, you can start the device configuration in the project tree by dou-
ble-clicking on the Devices & networks editor under the project or on the Device con-
figuration editor under the PLC station.

The Device view tab shows the occupation of the station rack. You configure the sta-
tion in this view. The Network view tab shows the networking between multiple sta-
tions. In this view you can add further subnets and stations, and configure their
networking (described in Chapter 3.4 “Configuring the network” on page 67). In
the Topology view tab you configure the geographic arrangement of the Ethernet
network.

Working in the Device view

The device configuration shows a rack with the current modules. If several PLCs
are present in the project, select the one you wish to edit in the toolbar of the
working window. You can now drag new modules with the mouse from the hard-
ware catalog to the rack, or remove existing ones. In the inspector window you can
set the properties of the selected module such as the technological functions of
the CPU or the addresses of the input/output modules.

3 Device configuration

58

Working in the Network view

The Network view shows the stations present in the project and their networking.
With the Network button activated, you connect two devices into a network by
selecting an interface in a station and dragging it with the mouse to another sta-
tion. A subnet is then created automatically. You can connect a station to an existing
subnet by dragging the interface with the mouse to the subnet. With the Connec-
tions button activated, you define a connection by selecting a subnet and then the
type of connection from the drop-down list; alternatively, the type of connection is
determined during programming of the communication functions, for example
with open user communication.

You set the properties of the selected objects in the inspector window, e.g. the line
configuration and the bus parameters, when networking with PROFIBUS.

Working in the Topology view

The Topology view shows the networking between the stations on the Ethernet bus
system. The connections between the device ports are shown. The connections can
be created, changed, or deleted.

In online mode, the Topology view shows the differences between the reference and
actual topologies. A topology present online can be adopted offline as configuration
information.

Save, compile and download

You save the entered data on the hard disk by saving the complete project (using
the Project > Save command in the main menu). In order to download the configu-
ration data to a CPU module, it must first be compiled in a form understandable to
the CPU (using Edit > Compile). Any errors occurring during compilation are indi-
cated in the inspector window under Info. Only error-free (consistent) compilations
can be downloaded to the CPU module using Online > Download to device.

Working area of the device configuration

The device configuration shows the project in the Project view. Fig. 3.1 shows the
working area of the device configuration without project tree.

Three views are available in the Working window:

b The Device view shows the current configuration of the PLC station. The config-
uration is shown as a graphic in the top part of the window, and as a table in the
bottom part.

b In the Network view you can see – if more than one station is present in the
project – the connections between the stations, also as a graphic in the top part
of the window and with the existing stations and their interconnections as a table
in the bottom part.

3.1 Introduction

59

You can use the Topology view to display and configure the port connections with
an Ethernet network as a graphic in the top part of the window and as a table in the
bottom part.

In all cases, you can “fold shut” the bottom part of the working window.

The Inspector window is positioned below the working window. In the Properties
tab, this shows the properties of the object selected in the working window. The Info
tab contains general information on the configuration session and the compilation,
and the cross-reference list. The Diagnostics tab shows the operating mode of the
stations and the message display.

The Hardware catalog is available on the right in the task window. It shows all
hardware components which can be configured with the current version of STEP 7.
If you select a component in the lowest level of the hardware catalog, a brief
description of the most important properties is shown in the information area of
the hardware catalog.

You can change the size of all windows. You can close all windows except the work-
ing window, thus providing more space for the working area. The working window
can also be maximized and displayed as a separate window.

Fig. 3.1 Example of working area of device configuration (Device view)

3 Device configuration

60

Expanding the hardware catalog

If you want to configure a PROFIBUS DP slave that does not appear in the hardware
catalog, you must install the GSD file provided by the manufacturer. A GSD file
(General Station Description file) contains all the PROFIBUS DP slave properties as
text with keywords. If you want to configure a PROFINET IO device that does not
appear in the hardware catalog, you must install the GSDML file provided by the
manufacturer. This is an XML file containing all properties of a PROFINET IO device
as GSDML (General Station Description Markup Language).

To subsequently install GSD and GSDML files, select the command Options > Install
general station description file (GSD) from the main menu. Enter the source path in
the subsequent dialog, and select the file to be installed.

If, after the publication date of STEP 7, new components such as modules come on
the market, these components can be added later to the hardware catalog with
hardware support packages (HSP).

To subsequently install support packages, select the command Options > Support
Packages from the main menu. The Detailed information window displays the
installed products and components as well as operating system information. Under
Installation of Support Packages, you can select whether you wish to download the
update from the Internet or add existing support packages from the file system.

3.2 Configuring a station

“Configuring” is understood to be the addition of a station to the project or, with a
PLC station, the arranging of the modules in a rack and the fitting of modules with
submodules.

3.2.1 Adding a PLC station

When creating a new project, you normally add a PLC station at the same time.
You can add further PLC and HMI stations in both the Portal view and the Project
view. In the Portal view, you can add a new station in the Devices & networks portal
using the Add new device command. In the Project view, double-click on Add new
device in the project tree.

Select the desired CPU in the selection window, and assign it a meaningful name.
Before clicking on the OK button, make sure that the Open device view check box is
activated in the window at the bottom left.

You have now configured a rack with a CPU module inserted in slot 1. All slots pos-
sible for a CPU 1200 are shown on the right of this. The number of slots depends on
the selected CPU. You can open the display to the left of the CPU and thus expand
the rack for inserting communication modules.

3.3 Assigning module parameters

61

3.2.2 Arranging modules

If not already done, start the Device configuration editor in the project tree under-
neath the PLC station by double-clicking. To insert a further module, select it in the
hardware catalog (the symbol of the module in the lowest catalog level). You are
then provided with a description of the selected module in the information window
of the hardware catalog. The permissible slots in the rack are displayed. Position the
new module by double-clicking on the module symbol or by dragging it with the
mouse to the subrack. You can position a signal board directly on the CPU module
in the same manner.

You can either delete an inserted module again (remove it from the rack) or replace
it by a different, equivalent one.

3.2.3 Adding an HMI station

Using the Add new device command you can add an HMI station to the project either
in the Devices & networks portal or in the project tree. Select the desired HMI device
in the selection window, and assign it a meaningful name. Before clicking on the OK
button, make sure that the Use device wizard check box is activated in the window
at the bottom left if you wish for guidance when starting the configuration. The fur-
ther procedure is described in Chapter 4.1.3 “Operand area bit memory” on page
82.

3.3 Assigning module parameters

“Parameterization” is understood to be the setting of module properties. These in-
clude, for example, setting addresses, enabling interrupts, or defining communica-
tion properties.

Module parameterization is carried out for a selected module in the inspector win-
dow in the Properties tab. Select the properties group on the left side, and set the
values in interactive mode on the right. You can stop the setting of properties at any
time and continue later. Only a portion of the total parameters described below can
be assigned to individual modules.

3.3.1 Parameterization of CPU properties

The CPU's operating system operates with the default settings for program execu-
tion. You can change these default settings in the hardware configuration during
parameterization of the CPU and match them to your specific requirements. Subse-
quent modification is possible at any time.

When starting up, the CPU adopts the settings deviating from the default settings
in STARTUP mode. These settings then apply to further operation.

To parameterize the CPU properties, select the CPU in the working window of the
device configuration. If the project contains several stations, select the desired sta-
tion in the menu bar of the working window.

3 Device configuration

62

You set the name of the PLC station in the General section. Catalog information
about the CPU is also shown.

In the PROFINET interface section under Ethernet addresses, you set the connec-
tion to an Ethernet subnet and define the IP address and the subnet mask. For more
information on the format of the IP address, refer to Section “IP address and subnet
mask” on page 73. Under Advanced you can parameterize the real-time properties
of the PROFINET IO communication and the port interconnection (networking of
the connection).

The parameterization of the digital and analog inputs/outputs is described in
3.3.2 “Addressing input and output signals” on page 64.

A high-speed counter (HSC) can count at a frequency of up to 200 kHz when using
an appropriate signal board, and thus much faster than a software counter. You
must activate the high-speed counter before you can use it. A high-speed counter
requires defined inputs which are then no longer available for other purposes. Fur-
ther information on the application and parameterization of high-speed counters
can be found in Chapter 17.1.1 “High-speed counter (HSC)” on page 548.

The pulse generators provide pulses of up to 200 kHz when using an appropriate
signal board. A pulse generator has two modes of operation: PTO (pulse train out-
put) and PWM (pulse-width modulation). Pulses are output via a special onboard
output. Further information on the application and parameterization of pulse gen-
erators can be found in Chapter 17.1.2 “Pulse generator” on page 554.

You can set the startup characteristics of the CPU under Startup. This is where you
determine how the CPU module is to react when the power supply is switched on:

b No startup (CPU remains in STOP mode)

b Warm restart – RUN (the CPU executes the user program)

b Warm restart – operating mode prior to POWER OFF (either STOP or RUN)

The duration for module parameterization for the distributed I/O is monitored
during a startup. You can set the monitoring time here. A module is considered to
be absent if the monitoring time for it expires. Further information on the CPU
startup can be found in Chapter 5.1.2 “STARTUP mode” on page 118.

In the Cycle section, you set the scan cycle monitoring time with which the process-
ing of the main program is monitored. If the cycle monitoring time is exceeded, this
is reported and can lead to the STOP mode. Furthermore, you can activate a fixed
minimum cycle time, i.e. the next (cyclic) execution of the main program is only
started after this time has elapsed. Further details can be found in Chapter 5.6.3
“Cycle time” on page 144.

In the Communication load section you define the time share for communication.
In addition to execution of the user program, the CPU also carries out communica-
tion tasks, for example data transmission to another PLC station or downloading of
blocks from a programming device. This communication requires time, some of
which has to be added to the execution time of the main program. Specification of
the communication load can be used to control influencing of the cycle time to a

3.3 Assigning module parameters

63

certain extent. The time available for communication is entered as a percentage in
the Communication load parameter. The cycle time is then extended by the factor
100 / (100 – communication load).

System and clock memory are operands controlled by the operating system which
can be queried in the user program. For example, there is a bit memory which indi-
cates the occurrence of a diagnostics event, and also a bit memory which changes
its signal status at a frequency of 2 Hz. During parameterization of the CPU you
activate the system memories and/or the clock memories and assign addresses to
them. Further information on bit memories in general and on system and clock
memories can be found in Chapter 4.1.3 “Operand area bit memory” on page 82.

In the Web server section you can activate the Web server and set its properties.
Further details can be found in Chapter 17.4 “Web server” on page 567.

In the Time of day section you set the time zone for the integral real-time clock and
activate the daylight-saving time setting (difference between daylight-saving and
standard time, start and end of daylight-saving time).

In the Protection section you can protect the program in the CPU from unautho-
rized access. Here you select whether access protection is to be switched on, and
whether this is to be just write protection or combined read/write protection. Assign
a password if the read or write protection is activated. Anyone in possession of the
password has unlimited access to the CPU.

The Connection resources section shows the distribution of available connections
to the programming device and other networked stations.

Fig. 3.2 Example of the address overview of a CPU 1200

3 Device configuration

64

The assigned inputs and outputs are shown in the Overview of addresses. The
addresses of the configured modules, the slots, and – if applicable – the number of
the PROFIBUS master system or PROFINET IO system used are displayed (Fig. 3.2).

3.3.2 Addressing input and output signals

When configuring the modules, the hardware editor automatically assigns a mod-
ule start address. You can see this address in the configuration table in the bottom
part of the working window or in the properties of the selected module in the
inspector window in the section I/O addresses, specifying the input/output type:
DI (= Digital Input), DQ (= Digital Output), AI (= Analog Input), and AQ (= Analog
Output). Fig. 3.3 shows an example for the integrated inputs/outputs on a CPU 1214.

You can change the automatically assigned addresses. Since the address area is sep-
arate for inputs and outputs, these can have the same addresses (see Chapter 4.2
“Addressing” on page 85). Each input and each output requires an unambiguous
address.

The module start address is the first byte (the first 8 bits) of the module. If a module
has several bytes, these occupy the next addresses. When assigning the address you
can set whether the inputs and outputs are to be updated cyclically in the process
image. If you deselect this option, you must access the peripheral I/Os directly in the
program (see Chapter 5.6.2 “Process image update” on page 143).

The address dialog also shows the hardware identification (HW-ID) of the module
or component. The internal number is displayed. This number is assigned by the
hardware editor when configuring and cannot be changed.

Fig. 3.3 Example of parameterization of I/O addresses of a CPU 1200

3.3 Assigning module parameters

65

3.3.3 Parameterization of digital inputs

Set the following parameters in addition to the module address:

Use the input filter to set the input delay time. This defines the resistance of an
input channel to high-frequency noise signals. The longer the delay time, the
greater the interference resistance. However, this also increases the detection
period until a change in the input signal is recognized by the controller.

With appropriately designed input channels, e.g. onboard input channels, you can
assign a hardware interrupt to each change in input signal. The hardware inter-
rupt is enabled if you activate the corresponding check box for rising and/or falling
edges. Subsequently provide the process interrupt with a name and assign an orga-
nization block to it. You can select the organization block from a list if it has already
been created, or create a new block with a number starting from 200.

If you activate an integrated input channel for Pulse catch, it remains at signal sta-
tus “1” in the process image for a complete program cycle, even if the pulse was so
short that it would not “normally” have been detected by the user program.

3.3.4 Parameterization of digital outputs

Set the following parameters in addition to the module address:

With the digital output modules you can set the Reaction to CPU STOP. You can
choose between Use substitute value and Keep last value (Fig. 3.4).

You set the Substitute value in the properties of an output channel. The substitute
value “0” is output as standard with digital outputs. Signal status “1” is output if the
Substitute a value of 1 on a change from RUN to STOP check box is activated.

Fig. 3.4 Example of parameterization of a digital output channel

3 Device configuration

66

3.3.5 Parameterization of analog inputs

Set the following parameters in addition to the module address:

In Module diagnostics you can activate monitoring of the power supply so that a
diagnostics interrupt is generated in the event of a failure.

Use Noise reduction to set the integration time. Because they frequently have a
low signal level, analog signals can be “noisy” due to the line frequency. By select-
ing an integration time which differs from the line frequency, crosstalk of the line
frequency is reduced (Fig. 3.5).

For the Measurement type you can set Voltage with the ranges ±2.5 V, ±5 V and
±10 V or Current (0 to 20 mA). With smoothing in he steps None (1 cycle),
Weak (4 cycles), Medium (16 cycles) and Strong (32 cycles) you can prevent excessive
variation of the recorded analog signal.

In Channel diagnostics you can activate the Enable overflow diagnostics and
Enable underflow diagnostics check boxes to trigger a diagnostics interrupt when
the measured value exceeds or falls below the standard range.

3.3.6 Parameterization of analog outputs

Set the following parameters in addition to the module address:

In Module diagnostics you can activate monitoring of the power supply so that a
diagnostics interrupt is generated in the event of a failure.

With the analog output modules you can set the Reaction to CPU STOP. You can
choose between Use substitute value and Keep last value.

Fig. 3.5 Example of parameterization of an analog input channel

3.4 Configuring the network

67

You set the Substitute value in the properties of an output channel. The substitute
value 0 (zero) is output as standard with analog outputs. You can enter a different
value in the input box Substitute value for channel on a change from RUN to STOP.

Under Analog output type you can set the Voltage (±10 V) or Current (0 to 20 mA).
For the Channel diagnostics you can activate the check box for short-circuit diag-
nostics for Voltage, or the check box for open-circuit diagnostics for Current. Over-
shoot and undershoot diagnostics are activated as standard. A diagnostics interrupt
is triggered if a corresponding event occurs.

3.4 Configuring the network

3.4.1 Introduction

The network configuration permits the graphic display and documentation of the
configured networks and their stations. Configuration of the networking is part of
the device configuration. If a PLC station is operated on its own – without an HMI
station and without data communication to other PLC stations – you do not require
network configuration. Connection of a programming device for transfer of the
user program and for program debugging does not require network configuration
either.

Fig. 3.6 Example of working area of network configuration (network view)

3 Device configuration

68

You can access the network configuration with the project opened in the Portal view
via Devices & networks and Configure networks or in the Project view with the Devices
& networks editor, which is positioned in the project tree underneath the project. In
the working window of the device configuration, change to the Network view tab
(Fig. 3.6).

In the top part of the working window, the Network view graphically displays all
PLC, PC, and HMI stations present in the project as well as the networking, provided
this has already been configured during device configuration. The bottom part of
the working window contains the Network overview, Connections and I/O communi-
cation tabs. You can drag further stations with the mouse from the hardware cata-
log into the working area and thus add them to the project. The inspector window
shows the properties of the selected object.

3.4.2 Networking stations

“Networking” of stations corresponds to the wiring of modules with communica-
tion capability, i.e. a mechanical connection is established. A logical connection is
additionally required in order to transfer data on the cable. The logical connection
defines the transmission parameters between the modules.

The working window of the hardware editor shows the existing stations with the
modules with communication capability. The interfaces for the PROFIBUS,
PROFINET, and AS-Interface subnets are highlighted. Communication modules
that may be present are arranged on the left next to the CPU.

Adding a station in the network configuration

In the hardware catalog under PLC > SIMATIC S7-1200 > CPU > [folder: CPU 12xx…]
> [CPU], select the desired CPU and drag it with the mouse into the working area.
The graphic shows the CPU as a representative for the complete PLC station with
the existing bus interfaces.

If you drag the CPU to an existing subnet and if the CPU has an interface matching
the subnet, the interface is directly connected to the subnet when adding.

Adding a communication module in the network configuration

In the hardware catalog under PLC > SIMATIC S7-1200 > Communication modules >
[folder: Subnet] > [folder: Modules] > [Module], select the desired communication
module and drag it with the mouse into the station graphic on the working area.
The module is shown with the existing bus interfaces in the PLC station next to the
CPU.

Adding a subnet

Select the desired bus interface in the station graphic and then select the Add sub-
net command from the shortcut menu. A subnet corresponding to the bus interface
is added.

3.4 Configuring the network

69

Networking a station

To network stations, click on the Network button in the toolbar of the working win-
dow.

If a subnet has not yet been created, select the bus interface in one of the stations
and drag it to a bus interface of the other station which matches the subnet. The
subnet is then added; the interfaces are connected by a colored line.

If the matching subnet is already present, select the bus interface in the station and
drag it to the subnet. The interface is connected to the subnet by a colored line.

Properties of the Ethernet network

The network configuration shows the Ethernet connections between several sta-
tions as a linear bus connection: all stations are hanging quasi on one line. Actually,
an Ethernet connection is a point-to-point connection between the stations: each
station is connected to exactly one partner station. The PROFINET interface of a CPU
1215 has two ports which are connected together by an integrated switch. A linear
network can thus quasi be set up.

Modules without this integrated switch must be networked together via an external
“distributor” with several connections. You can find these devices in the hardware
catalog under Network components > IE switches > [Group] > [Device type] > [Device].

In the S7-1200 automation system, a CSM 1277 Ethernet switch is available with
four ports and in S7-1200 design. The switch is not displayed in the network view
since it does not require any parameters. In the topology view, if all ports are
connected individually, the switch can be found in the hardware catalog under Net-
work components > IE switches > Compact switch modules > CSM 1277 unmanaged >
[Module].

Disconnecting a module from the subnet or assigning it to a different subnet

If you wish to disconnect a module from the subnet, select the bus interface and
then the Disconnect from subnet command in the shortcut menu. If all modules
have been disconnected from a subnet, it is shown as an isolated subnet at the top
left in the working area.

If you wish to assign a module to a new subnet, select the bus interface and then the
Assign to a new subnet command in the shortcut menu. If several suitable subnets
are available, select the appropriate one from the displayed list.

3.4.3 Node addresses in a subnet

Each module – each “node” – connected to a subnet requires an unambiguous
address on the subnet (the “node address”) with which the module can be
addressed within the subnet. When assigning node addresses, attention must be
paid to the particular properties of the associated subnet.

3 Device configuration

70

Display of node addresses

To display the node addresses in the Network view, click in the toolbar of the work-
ing window on the Show address labels icon. The Network view shows the name of
the subnet and the node address. If the bus interface is not connected to a subnet,
only the node address is displayed (Fig. 3.7).

Setting node addresses

When networking a module, the editor automatically occupies the next unused
node address for the bus interface. You can change this automatically assigned
address in the module properties in the inspector window with the bus interface
selected.

3.4.4 Connectors

Introduction

A physical connection and a communication connection (logical connection) are
required for communication between two devices.

The physical connection is established by “networking” during the configuration.
The networking represents the cabling, even in the case of wireless transmission.
The networking is represented graphically by the subnets.

Data transmission over the network requires a communication connection (logical
connection). The logical connection defines the transmission parameters between
the stations, such as the communication partners involved or the type of connec-
tion. The configured (logical) connections are listed in the connection table.

A connection is defined unequivocally by means of the “local (connection) ID”. In
the communication functions program, this local ID specifies the connection via
which the data is to be transmitted.

Fig. 3.7 Display of node addresses in the Network view

3.4 Configuring the network

71

A connection is either dynamic or static depending on the communication service
selected. Dynamic connections are not configured whose establishing and clearing
down take place depending on events. Only one non-configured connection to a
communication partner can exist at any time.

Static connections are configured in the connection table; they are established
during the startup and are retained throughout the complete program execution.
Several connections can be established in parallel to one communication partner.
Under “Connection type” in the network configuration you can select the desired
communication service.

Connection types

Select the connection type depending on the subnet and the transmission protocol.
In most cases this is the S7 connection. You can then exchange data between all S7
devices on all subnets. The programming device also uses this connection type for
programming the PLC and HMI stations.

You use the HMI connection for communication with an HMI station. You use the
other connection types, for example, if you wish to transmit data to third-party
devices. This usually takes place by means of a communication module.

Connection resources

Every connection requires connection resources on the communication partners
involved for the end point of the connection and for the transition point in a com-
munication module. Each CPU has a specific number of possible connections.
Restrictions and rules apply to use of the connection resources. For example, not
every connection resource can be used for every connection type.

The operating system of a CPU 1200 simultaneously supports the following asyn-
chronous communication connections:

b 1 connection to a programming device

b 3 connections to an HMI device (HMI station)

b 8 connections for Open User Communication

b 3 connections for the S7 communication (PUT/GET) as server

b 8 connections for the S7 communication (PUT/GET) as client

b 1 connection to the Web server (HTTP)

One connection is always reserved for a programming device, and another one for
an HMI station (these cannot be used for anything else).

Configuring connections

In order to configure a connection in the network view, click on the Connections but-
ton in the toolbar of the working window, and select the connection type in the adja-
cent list. The devices suitable for this connection type are then displayed and high-
lighted (Fig. 3.8).

3 Device configuration

72

Click with the left mouse button on a station, drag the connection line with the
mouse button pressed to the other station, and release the button. A connection
with the connection name is displayed as a blue/white patterned line. Several logi-
cal connections can be created on one cable. These connections are then also pres-
ent in the connection table in the Connections tab in the bottom part of the working
window.

If you wish to determine which connections have been created in a subnet, click the
Connections button and move the cursor to the subnet in the graphic display. If you
click on one of the connections listed in the tooltip window, this connection is dis-
played highlighted in the Network view.

Connection properties

Under General in the Properties tab, the inspector window shows the connection
partners, the connection path, and the node addresses. If a station has several suit-
able interfaces, you can select the appropriate one from a drop-down list. You can
set further connection properties in the bottom part of the Properties window, e.g.
which partner is responsible for active establishment of the connection, and the
local connection ID.

Fig. 3.8 Representation of an HMI connection in the network configuration

3.4 Configuring the network

73

3.4.5 Configuring a PROFINET subnet

To configure a PROFINET subnet, drag the PN interface of one station to the PN
interface of the other station with the mouse. A PROFINET subnet will be created
automatically. You can also drag a PN interface to an existing PROFINET subnet.

Setting the properties of a PROFINET subnet

To set the properties, select the PROFINET subnet and then the Properties tab in the
inspector window. Under General you can assign a different name to the subnet and
also change the subnet ID if appropriate.

Setting the properties of a PN interface

To set the properties, select the PN interface and then the Properties tab in the
inspector window. Under General you can set a different name for the interface.
Under Ethernet addresses you set the IP address and the subnet mask of the CPU.

Ethernet address (MAC address)

The MAC (Media Access Control) address is an unambiguous address assigned to
the device and defined by the manufacturer. It consists of three bytes with the
manufacturer ID and three bytes with the device ID. The MAC address is usually
printed on the device and is assigned to the latter during the configuration – if
this has not already been carried out in the factory. The bytes are assigned in hexa-
decimal form (symbols 0 to F); the individual bytes are separated by colons. Exam-
ple: 01:23:45:67:89:AB.

IP address and subnet mask

Each station on the Industrial Ethernet subnet which uses the TCP/IP protocol
requires an IP (Internet Protocol) address. SIMATIC S7 supports Version 4 of the
Internet protocol (IPv4). The IP address must be unique on the subnet. The IP
address consists of four bytes, each separated by a dot. Each byte is represented as
a decimal number from 0 to 255.

Fig. 3.9 Example of the structure of an IPv4 address

IP address

Subnet address

Subnet mask

Station address

192

192

255

0

168

168

255

0

1

0

0

1

3

0

0

3

The subnet address is
left-justified in the IP address
and is generated from the
bit-by-bit AND operation of
the IP address with the
subnet mask.

The bit positions of the
subnet mask occupied by “1”
must be positioned flush left
and without gaps.

IP address and subnet mask

3 Device configuration

74

The IP address consists of the subnet address and the station address. The contri-
bution made by the network address to the IP address is determined by the subnet
mask. This consists – like the IP address – of four bytes which normally have a value
of 255 or 0. Those bytes with a value of 255 in the subnet mask determine the sub-
net address, those bytes with a value of 0 determine the node address (Fig. 3.9).

Values other than 0 and 255 can also be assigned in a subnet mask, thereby dividing
up the address volume even further. The bits with “1” must be occupied beginning
from the left without gaps.

The IP address is assigned one time for the IO controller when configuring with the
hardware configuration for the nodes of a PROFINET IO system. Starting from this,
the hardware configuration assigns the IP addresses to the IO devices in ascending
order.

Device name, device number

Every IO controller and every IO device has a device name. The device name is made
up as standard from the name of the CPU used, the interface number, and the name
of the PROFINET IO system: <CPU>.<Interface>.<IO system>. You can change the
name of the respective component in its properties.

The interface number is only used if the CPU has more than one PN interface. The
name of the IO system can be automatically appended to the device name, sepa-
rated by a dot. To do this, activate the Use name as expansion for PROFINET device
name checkbox in the properties of the PROFINET IO system.

Fig. 3.10 Example of Ethernet addresses for an IO device

3.4 Configuring the network

75

If the names used do not correspond to the conventions of IEC 61158-6-10 (name
components basically consisting of lower-case letters, numbers, and hyphens sep-
arated by a dot), STEP 7 generates a so-called “converted” name which is then down-
loaded to the device (see Fig. 3.10).

As a supplement to the device name, the hardware configuration assigns a device
number to each IO device which is independent of the IP address and which you
can change. Using this device number (station number) you can address the IO
device from the user program, e.g. as a current parameter on a system block.

IP address of the router

A router establishes the connection between two subnets. If the target of a device
connection is in a different subnet, the IP address of the corresponding router must
also be specified. The connections of the router belong to two different subnets, and
the IP addresses must also be selected accordingly.

Setting the interface parameters

If the parameters of the PROFINET interface have not already been set during the
hardware configuration, they can be defined during the network configuration.

Prerequisite: a project with two or more stations is open, the device configuration
shows the stations in the network view.

b Select the PROFINET interface, e.g. by clicking with the mouse in the graphic
display or on the corresponding line in the tabular device or network overview.

b In the Properties tab of the Inspector window, select the Ethernet addresses
section under General.

b If the subnet has not yet been created, click on the Add new subnet button to con-
nect the interface to a subnet.

b Enter the IP address and the subnet mask.

b Enter whether an IP router is used, and then the router address if applicable.

You can display the addresses of the interfaces using the Show address labels sym-
bol in the toolbar of the network view.

3.4.6 Configuring a PROFIBUS subnet

A CPU 1200, together with a CM 1243-5 module as DP master and with a CM 1242-5
module as DP slave, can be connected to a PROFIBUS subnet.

To configure a PROFIBUS subnet, drag the DP interface of one stationto the DP inter-
face of the other station. A PROFIBUS subnet will be created automatically. You can
also drag a DP interface to an existing PROFIBUS subnet.

3 Device configuration

76

Setting the properties of a PROFIBUS subnet

To set the properties, select the PROFIBUS subnet and then the Properties tab in
the inspector window. Under General you can assign a different name to the sub-
net and also change the subnet ID if appropriate. Under Network settings you set
the highest node address, the transmission speed, and the profile in this subnet.
You must observe the technical specifications of the involved modules when
doing this (Fig. 3.11).

The selectable bus profiles have the following properties:

b The DP bus profile contains the optimized settings of the bus parameters for de-
vices which comply with the requirements of the EN 50170 Volume 2/3, Part 8-2
PROFIBUS standard, for example all SIMATIC S7 DP masters and DP slaves.

b Compared to the DP bus profile, the Standard bus profile additionally contains
the option for considering non-configured nodes during calculation of the bus
parameters, for example nodes from other projects.

b Select the Universal bus profile if the PROFIBUS FMS service is to be used in the
PROFIBUS subnet.

b When using the User-defined bus profile, you can set the parameters of the
PROFIBUS subnet yourself in the subnet properties. Correct functioning is only
guaranteed if the bus parameters are matched to one another. You should only
change the default values if you are familiar with how to configure the bus pro-
file for PROFIBUS.

Setting the properties of a DP interface

To set the properties, select the DP interface and then the Properties tab in the
inspector window. Under General you can set a different name for the interface.
Under PROFIBUS address you set the node address of the CPU.

Every station on the PROFIBUS DP has a node address (station number) with which
it can be addressed unequivocally on the bus. The addresses in a PROFIBUS subnet

Fig. 3.11 Example of network settings on the PROFIBUS

3.4 Configuring the network

77

can be freely assigned in the range from 1 to 126. The node address 0 is reserved as
standard for a programming device, which can be connected temporarily to the
PROFIBUS subnet for servicing purposes.

STEP 7 assigns node addresses from 2 upwards as standard in the hardware config-
uration. It is recommendable to assign the addresses without gaps.

Under Operating mode – depending on the CM module – the operating mode is pre-
set as DP master or DP slave and cannot be changed. The DP slave is an “intelligent”
DP slave, for which the user data interface to the DP master must be configured
under I-slave communication. Further details can be found in the Section 14.3.3
“Configuring PROFIBUS DP” on page 467 of Chapter 14.3 “PROFIBUS DP”.

3.4.7 Configuring an AS-i subnet

A CPU 1200, together with the CM 1243-2 module as AS-Interface master, can be
connected to an AS-Interface subnet (Fig. 3.12).

Setting the properties of an AS-i subnet

To set the properties, select the AS-i subnet and then the Properties tab in the
inspector window. Under General you can set a different name for the subnet.

Setting the properties of an AS-i master interface

To set the properties, select the AS-i interface in the master and then the Proper-
ties tab in the inspector window. Under General, you can give the interface
another name and the connection to the AS-Interface subnet is established under
AS-Interface.

Fig. 3.12 Example of an AS-i master system with CM 1243-2

3 Device configuration

78

Setting the properties of an AS-i slave interface

To set the properties, select the AS-i interface in the field device and then the Prop-
erties tab in the inspector window. Under General you can set a different name for
the interface. Under AS-Interface you set the AS-i subnet used and the node
address. The other settings specify operation on the AS-i subnet (see Chapter 14.4
“Actuator/sensor interface” on page 473).

4.1 Operands and tags

79

4 Variables and data types

4.1 Operands and tags

4.1.1 Introduction, overview

In order to control a machine or process, signal states and numerical values are
processed. Inputs are scanned, and their signal states linked together in accordance
with the control task; the results then control the outputs. It is similar with the
numerical values; these are selected, calculated, compared, and saved. The PLC sta-
tion provides the following memory areas for these variable values (Fig. 4.1):

b Peripheral inputs are the memory areas on the input modules. They constitute
the direct interface to the controlled machine, e.g. in order to scan the settings
of control elements or sensors.

b Inputs are an image of the peripheral inputs in the CPU's system memory. These
are normally processed by the user program when signal states of the machine
are to be scanned and linked. The totality of the inputs is the process image input.

b Peripheral outputs are the memory areas on the output modules. They constitute
the direct interface to the controlled machine, e.g. in order to control displays,
valves or contactors.

b Outputs are an image of the peripheral outputs in the CPU's system memory.
These are normally processed by the user program if the results of the control
functions are to be output. The totality of the outputs is the process image out-
put.

b Bit memories are a memory area in the CPU's system memory, and are used as a
global intermediate memory preferably for binary signals.

b Data refers to memory areas in the user memory for binary signals and numeri-
cal values. Data is organized in data blocks, which can either be addressed glob-
ally from all parts of the user program or which locally manage the data of a
function block. They are then called static local data.

b Temporary local data refers to memory areas assigned by the CPU to a logic block
during processing. The program can temporarily store signal states and numer-
ical values in the block; these lose their validity when processing of the block has
been completed.

Access to the signal states and numerical values (the addressing) can be absolute or
symbolic. Absolute addressing uses operands such as %I2.5, for example, which
comprise the operand ID (I for input in this case) and the memory address (byte 2
bit 5 in this case). If a name and a data type are assigned to an operand (symbolic

4 Variables and data types

80

addressing), this is known as a tag. For example, the operand %I2.5 could have the
name “Switch on machine” and the data type BOOL.

The data type of an operand or tag defines which values the individual bits of the
operand or tag have. An individual bit has the data type BOOL, and one refers to a
binary operand or binary tag. Operands and tags with a data width of one
byte (8 bits), one word (16 bits) or one doubleword (32 bits) are referred to as digital
operands or digital tags. The data types for digital tags are extremely diverse.
For example, the data type INT (integer) refers to a 16-bit wide fixed-point number,
the data type CHAR to a character in ASCII code, and the data type ARRAY to a com-
bination of several tags with the same type of data under one tag name.

4.1.2 Operand areas: inputs and outputs

Inputs, peripheral inputs

The peripheral inputs are the operands on the input modules. They contain the sig-
nal states delivered by the machine or process to the programmable controller via
the wiring. These signal states are automatically copied by the CPU's operating sys-
tem into the process image input prior to each processing cycle of the user program
(see Chapter 5.6.2 “Process image update” on page 143).

The process image input is located in the CPU's system memory. It contains the
operand area Inputs. The inputs are used to scan binary signals in the user program
and to link their signal states. This means that the input modules are not directly
scanned in the normal case, it is the process image input which is scanned.

Access to the peripheral inputs is read-only. Inputs can be read and written. Inputs
not occupied by peripheral inputs (the process image is designed for the maximum
configuration) can be used as additional intermediate memories like the bit mem-
ories.

Fig. 4.1 Operand areas in a PLC station

Temporary
local data

Output
process image

Peripheral
outputs

Input
process image

Global
data blocks

Instance
data blocks

Type
data blocks

Peripheral
inputs

System memory

User memory

Input
modules

Output
modules

Bit memory

Operand areas in a CPU 1200

4.1 Operands and tags

81

Outputs, peripheral outputs

The peripheral outputs are the operands on the output modules. They contain the
signal states with which the machine or process is controlled via the wiring. The
CPU's operating system automatically transfers the signal states of the process
image output to the peripheral outputs prior to each processing cycle of the user
program (see Chapter 5.6.2 “Process image update” on page 143).

The process image output is located in the CPU's system memory. It contains the
operand area Outputs. The outputs are used to save the results of the control func-
tions in the user program and to output these to the machine. This means that the
output modules are not directly written in the normal case, it is the process image
output which is written.

Outputs can be read and written. Outputs not occupied by peripheral outputs
(the process image is designed for the maximum configuration) can be used as ad-
ditional intermediate memories like the bit memories.

Access to the peripheral outputs is write-only. Writing of the peripheral outputs is
automatically tracked by the output process image, and therefore there is no differ-
ence in the signal states of the outputs and the peripheral outputs with the same
address.

User data area

With SIMATIC S7, every module can have two data areas: A user data area contain-
ing input and output data, and a system data area to transfer datasets with diagnos-
tic and parameter assignment data.

When the modules are addressed it is irrelevant whether they are located in central
racks or are used as distributed I/O. All modules are arranged equally in the (logi-
cal) address volume.

The user data properties of a module depend on the module type. These are digital
or analog I/O signals for signal modules or, for example, control and status infor-
mation for communication modules. The amount of user data is module-specific.
There are modules which occupy one, two, or more bytes in this area. Occupation
always commences at the relative byte 0. The (logical) address of the relative byte 0
is the module start address, which is defined by the hardware configuration.

The user data represent the peripheral operand area, divided into peripheral inputs
and peripheral outputs depending on the transfer direction. If the user data is pres-
ent in the area of the process images, the CPU automatically takes over data
exchange when updating the process images.

Consistent user data areas

Data consistency means that data is handled together. Transfer of the data block
must not be interrupted, and the data source and destination must not be changed
during the transfer either. A CPU 1200 receives the data consistency for tags with
all elementary data types and system data types. This means a read or write opera-

4 Variables and data types

82

tion for a tag with one of these data types cannot be interrupted.

For example, if in the main program a write operation is presently occurring and
an alarm is triggered that interrupts the main program, the CPU finishes the com-
plete write operation in the main program before the interrupt routine is started.

For a data block consisting of several tags, the interrupt routine can interrupt the
transmission of the data block after each tag. Simultaneous access from the main
program and the interrupt routine can thus destroy the consistency of the data. The
system functions DIS_AIRT before and EN_AIRT after the transfer of the data block
in the main program can be used to delay starting the interrupt routine until after
the data block is transferred. With an ARRAY data field, you can also use the system
function UMOVE_BLK.

A CPU 1200 supports a data consistency of 64 bytes for data transfer via PROFINET
IO and PROFIBUS DP. If a data field with more than 64 bytes should be transferred
consistently, use the system functions DPRD_DAT and DPWR_DAT.

Note that the “normal” updating of process images can be interrupted following
each transmitted doubleword.

Diagnostic and parameter data are always transferred consistently in data records,
for example diagnostic data with RALRM or parameter data transferred to and from
modules with RDREC and WRREC.

4.1.3 Operand area bit memory

The bit memories are, as it were, the “auxiliary contactors” of the controller.
They mainly serve to save binary signal states. They can be treated like outputs, but
are not connected “to the outside”. The bit memories are located in the CPU's sys-
tem memory; they are thus always available.

The bit memories are used if intermediate results are to be valid beyond block
limits and are to be processed in several blocks.

Bit memories can be read and written without limitation.

Retentive bit memories

Some of the bit memories can be set “retentive”, i.e. this part retains its signal state
even when deenergized. Retentivity always starts at memory byte 0 and ends at the
set upper limit. You can set the retentivity in the PLC tag table or in the assignment
list. Further information can be found in the Chapter 5.1.4 “Retentive behavior of
operands” on page 121.

System memory bits

A CPU 1200 makes a memory byte available whose signal state is controlled by the
CPU's operating system. Fig. 4.2 shows the structure of this system memory byte.
You define the number of the system memory byte when assigning the CPU param-
eters. The tags with default identifiers are entered in the PLC tag table when the sys-

4.1 Operands and tags

83

tem memory byte is activated. You can change the default identifiers. The individ-
ual bits have the following meanings:

b Bit 0: Is set to signal state “1” when the main program is processed for the first
time following switching-on of the CPU. It has the signal state “0” in all other pro-
cessing cycles.

b Bit 1: Is set to signal state “1” if the diagnostics state changes compared to the
previous program cycle; otherwise it has signal state “0”. During STARTUP and
in the first RUN cycle, bit 1 has signal state “0”.

b Bit 2: Is always set to signal state “1” (TRUE); can be used in the program as a
binary constant.

b Bit 3: Is always set to signal state “0” (FALSE); can be used in the program as a
binary constant.

Please note that the system memory byte must not be overwritten by the user program
since this could result in incorrect responses in the user program and operating sys-
tem.

Fig. 4.2 Assignment of the system and clock memory byte

Clock memory byte Clock_Byte

0.625 Hz (slow flashing light) Clock_0.625Hz
0.5 Hz Clock_0.5Hz

1 Hz Clock_1Hz
1.25 Hz (flashing light) Clock_1.25Hz

2 Hz Clock_2Hz
2,5 Hz (fast flashing light) Clock_2.5Hz

5 Hz (flickering light) Clock_5Hz
10 Hz Clock_10Hz

System memory byte System_Byte

No funktion
No funktion

No funktion
No funktion

Always “0” AlwaysFALSE
Always “1” AlwaysTRUE

Diagnostics changed DiagStatusUpdate
Initial run FirstScan

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Assignment of clock memory and system memory bytes

The tags are entered in the PLC tag
table with default identifier when
the corresponding byte is activated.

4 Variables and data types

84

Clock memory bits

Many processes in the PLC require a periodic signal. These can be implemented us-
ing timer functions (clock generator), cyclic interrupts (time-based program execu-
tion) or in a particularly simple manner with clock memory bits.

Clock memory bits are memories whose signal state changes periodically with a
pulse-to-pause ratio of 1:1. The clock memory bits are combined in one byte whose
individual bits correspond to fixed frequencies (Fig. 4.2). You define the number of
the clock memory byte when assigning the CPU parameters. The tags with default
identifiers are entered in the PLC tag table when the clock memory byte is activated.
You can change the default identifiers.

Note that the clock memories are updated asynchronous to processing of the main
program. The clock memories are also updated in the startup program.

Please note that the clock memory byte must not be overwritten by the user program
since this could result in incorrect responses in the user program and operating sys-
tem.

4.1.4 Operand area data

The operand area Data is organized in data blocks which are present in the user
memory. Data blocks are available in three versions:

b Global data blocks have a data structure which is defined when configuring the
data block.

b Instance data blocks are derived from function blocks. The data structure of an
instance data block is defined in the function block. An instance data block con-
tains the values of the block parameters and static local data for calling the func-
tion block, for an “instance”. The instance data is local data for the program in
the function block.

b Type data blocks are derived from data types. The data structure of a type data
block is based on a PLC data type or system data type.

Data blocks are global objects which can be addressed in absolute mode using their
number, or symbolically using a name. The name of the data block must be unique
on the CPU. The data tags (data operands) within a data block are local data; they
are declared when creating the data block (global data blocks), the function block
(instance data blocks), or the data type (type data blocks). The name of a data tag
must be unique in the data block. In association with the data block, a data tag has
the characteristic of a global tag.

Data tags can basically be read and written without limitation; limitations may exist
with certain (system) data types. The data tags of a data block with the activated
attribute Data block read-only in device cannot be overwritten by the program.

The data present in data blocks can be retentive, i.e. it retains its value even when
deenergized. Further information can be found in the Chapter 5.1.4 “Retentive
behavior of operands” on page 121.

4.2 Addressing

85

4.1.5 Operand area temporary local data

Temporary local data includes operands present in the local data stack (L stack) in
the CPU's system memory. Temporary local data is available in each logic block. It
serves as a buffer for results that are produced during block processing. Its contents
are lost at the end of block processing. The data cannot be accessed by other blocks.

Within the block, the temporary local data can be read and written without limita-
tions. Temporary local data cannot be preallocated with a defined value. In order to
use temporary local data for meaningful purposes, it must be written before being
read. Temporary local data is addressed symbolically.

The CPUʼs operating system provides 16 KB of temporary local data for block pro-
cessing in the startup and in the main program, and 4 KB each for processing of an
interrupt program and the error program. When certain organization blocks are
called, the operating system transfers start information in the temporary local
data. This start information is displayed in the block interface as input parameters.

The number of temporary local data required by a block can be seen in the call
structure of the user program. With the project open, select the Program blocks
folder in the project tree, and then select the Call structure command from the
shortcut menu. The occupied temporary local data is displayed in the call path and
per block in the table which is then output.

4.2 Addressing

4.2.1 Signal path

By wiring the machine or plant you define which signals are connected to the PLC
station, and where (Fig. 4.3). An input signal, e.g. the signal from pushbutton
+HP01-S10 with the significance “Switch on motor”, is connected to a specific termi-
nal on an input module. You configure the slot in which the module is inserted in
the hardware configuration using STEP 7. You use the hardware configuration to
set the module start address, from which the addresses of the module channels are
derived. This address on the module is simultaneously the address in the process
image. This (logical) address is used to address the signals in the user program.

The CPU automatically copies the signal from the input module into the process
image input every time before cyclic program processing is started, where it is
then addressed as the operand “Input” (e.g. %I5.2). The expression “%I5.2” is the
absolute address.

You can now give this input a name in that you assign a name corresponding to the
significance of this input signal (e.g. “Switch on motor”) to the absolute address in
the PLC tag table. The expression “Switch on motor” is the symbolic address.

The same applies analogously to the output signals. In the hardware configura-
tion you define the slot for the output module and also the module start address.
This is then also the address in the process image output. You can also assign a
name to this address in the PLC tag table.

4 Variables and data types

86

4.2.2 Absolute addressing of an operand

During absolute addressing, a signal state or a numerical value is addressed
directly using the address in the operand area. The operand, for example %I2.5,
contains the operand ID, the byte address and – with binary operands – the bit
address separated by a dot. The operand ID contains the operand area and specifi-
cation of the operand width (Table 4.1). An absolute address is displayed with a pre-
ceding percent sign (%).

Data operands can only be addressed in absolute mode if the Optimized block access
block attribute is not activated in the data block.

The bits in a byte are counted from right to left, starting with zero. Counting is
started from the beginning for each byte. Each operand area is organized in bytes.
The bytes are counted commencing at the start of the area with zero. With an oper-
and of byte width, the number of the byte is specified as the byte address; with an
operand of word width, the number of the least significant byte; and with an oper-
and of doubleword width, the least significant byte number in the doubleword.
This principle is explained in Fig. 4.4 using the memory bytes MB 24 to MB 27 as
example.

4.2.3 Absolute addressing of an operand area

A block parameter with the VARIANT parameter type can also be supplied with an
absolutely addressed operand area. A pointer is used here containing the operand
area, the start address, the data type, and the number of components (Fig. 4.5).

Fig. 4.3 Signal path from sensor to process image

+HP01
-S10

System memory

7 6 5 4 3 2 1 0

Byte 4

Byte 5

Absolute
addressing

Process image
input

00

77

00

77

Byte 4Relative
byte 0

Bit

(Byte 5)Relative
byte 1

Peripheral
inputs

Input
terminals

Input module

Module
start address

Slot
address

Signal path from the sensor to the process image

The address in the process
image is derived from the
module start address. In the
example, the absolute address
of the input signal is: %I5.2.

The slot address identifies
a specific module in the
station. It contains the
numbers of the rack and
the number of the slot.

The module start address
identifies the module in
the “logical” address area of
the station. It represents the
lowest byte of the module.

4.2 Addressing

87

Table 4.1 Operand IDs and absolute addressing

Operand
area

Operand ID Bit
(1 bit)

Byte
(8 bits)

Word
(16 bits)

Doubleword
(32 bits)

Input I %Iy.x %IBy %IWy %IDy

Peripheral
input

:P “appended” to the input
operand

%Iy.x:P %IBy:P %IWy:P %IDy:P

Output Q %Qy.x %QBy %QWy %QDy

Peripheral
output

:P “appended” to the output
operand

%Qy.x:P %QBy:P %QWy:P %QDy:P

Bit memory M %My.x %MBy %MWy %MDy

Data DB %DBz.DBXy.x %DBz.DBBy %DBz.DBWy %DBz.DBDy

Temporary
local data

Absolute addressing of temporary local data is not possible

z = data block number, y = byte address, x = bit address

Fig. 4.4 Bit and byte assignments

Fig. 4.5 Pointer for the absolute address of an operand area

%MW24

%MD24

%MW26

%MB24

%MW25

%MB26%M25.1 %M27.7

24 25 26 27Byte number

Bit number

Absolute bit and byte addressing

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Input: Iy.x
Output: Qy.x
Bit memory: My.x
Data: DBz.DBXy.x

BYTE, WORD, DWORD
INT, DINT,
REAL,
TIME,
CHAR

Absolute addressing of operand areas

P# Initial operand [space] data type [space] numberP# Initial operand [space] data type [space] number

Initial operand: Data type: Number:

x = bit address
y = byte address
z = data block number

Structure of the pointer:

Number of components
with the specified data type.
The area can comprise a
maximum of 65 536 bytes.

P# Initial operand [space] Data type [space] Number

4 Variables and data types

88

The start address must be a bit address. The permissible data types are an intersec-
tion between the data types of a CPU 1200 and a CPU 300/400, because the pointer
is derived from the ANY pointer of a CPU 300/400. The number defines the size of
the area; it corresponds to the number of components with the specified data type.

Examples: The pointer P#M100.0 DWORD 4 comprises an area of four doublewords,
beginning with the memory byte MB 100, and with a size of 16 bytes. The pointer
P#DB10.DBX0.0 INT 16 comprises an area of 16 INT tags within data block DB 10,
beginning with data byte DB 0, and with a size of 32 bytes.

If a data area is addressed in absolute mode, the Optimized block access block attri-
bute must not be activated in the data block. The use of an absolutely addressed
operand area makes sense if there is no tag defined for this area.

4.2.4 Symbolic addressing

During symbolic addressing, an operand is assigned an alphanumeric ID (name,
symbol) and a data type. This is called a tag. For example, the operand %I2.5 could
have the name “Switch on machine” and the data type BOOL. The tag “Switch on
machine” can then be used in the program instead of the operand %I2.5.

Tag names can be made up of letters, digits, and special characters (except double
quotes). No distinction is made between upper and lower case when checking the
name.

Symbolic addressing of global tags

Global tags can be addressed by any block in the entire program. They are declared
in the PLC tag table, and have a unique name within the user program. Global tags
are located in the following operand areas: inputs, peripheral inputs, outputs,
peripheral outputs, and bit memories.

Global tags must not have a name which has already been assigned to a constant,
PLC data type or block. The program editor indicates the name of a global tag in
quotation marks.

Symbolic addressing of block-local tags

Block-local tags are declared within a block in the interface definition. They have a
unique name within the block. The same tag name can be used in another block
with another meaning. The operand areas of the block-local tags are

b the temporary local data in the system memory for all logic blocks,

b the block parameters for functions (FC) and function blocks (FB),

b the static local data in the instance data block for function blocks (FB), and

b the data operands for data blocks (DB).

The program editor indicates the name of a block-local tag with a preceding num-
ber sign (#). If the name includes special characters, it is additionally indicated in
quotation marks.

4.2 Addressing

89

Symbolic addressing of data tags

A data tag is always addressed together with the data block in which it is located.
The data tag is thus given the characteristic of a global tag. An example: The tag
name “Switch on motor” can be present in both data blocks “Motor 1” and “Motor
2”. The address “Motor 1”.“Switch on motor” addresses a different tag than the
address “Motor 2”.“Switch on motor”. The general symbolic address of a data tag is:
“Data block name”.Tag name. All data tags can thus be addressed, even those in an
instance data block.

If the instance data of a function block must be addressed, i.e. the block parameters
and static local data, only the tag name, along with a numerical prefix, is specified:
#Local data. For a function block, the instance data are local tags. Further details on
static local data can be found in the Section “Static local data” on page 136.

4.2.5 Addressing a tag part

It is possible to address an area within a tag. This area can be a bit, byte, or word.

With the block attribute IEC check active, the tag must have data type BYTE, WORD,
or DWORD; if the IEC check block attribute is deactivated, this can also be a fixed-
point data type (USINT, UINT, UDINT, SINT, INT, DINT).

To address a bit in a tag, program tag name. x<bit number>, for a byte, program tag
name.b<byte number>, and for a word, program tag name.w<word number>. The
numbering begins with zero in each case and must remain within the tag length.

Example: A tag with the name Temperature and data type INT is stored in the data
block Store. The highest-value bit (the sign bit of data type INT) is addressed with
“Store”.Temperature.x15.

4.2.6 Addressing constants

A constant is a fixed numerical value. The notation for a directly entered constant
and the value range depend on the required data type (see Table 4.4 on page 96).
Constants in floating-point format can be entered in exponential format (e.g.
+1.234567E+02) or in decimal format (e.g. -123.4567).

Globally valid constants can be assigned a name in the PLC tag table in the User con-
stants tab. Letters, digits, and special characters – except double quotes – are per-
missible for the name. All elementary data types are permissible.

The name of a constant is unique on the CPU. A name with which a PLC tag, PLC data
type, or block has already been identified cannot be assigned to a constant. No dis-
tinction is made between upper and lower case when checking the name. The pro-
gram editor represents a symbolically addressed constant in quotation marks.

4.2.7 Indirect addressing

Indirect addressing allows you to address operands whose address is only deter-
mined during runtime. You can thus, for example, let program parts be processed
several times in a loop and use a different operand each time.

4 Variables and data types

90

Since with indirect addressing the addresses are only calculated during runtime,
the danger exists that memory areas can be overwritten unintentionally. The auto-
mation system could then react in an unexpected manner! Therefore be extremely
careful when using indirect addressing!

Indirect addressing of field components

The index of a field component can be a tag whose value is only specified at runtime
and which can be changed. Fixed-point data types are permitted as data type of the
index tags (SINT, INT, DINT, USINT, UINT, and UDINT). The value of the index tags
may range only within the defined limits of the field tags.

Example: If MeasuredValues is the name of an ARRAY tag and Index is the name of
an INT tag, a field component can be addressed with #MeasuredValues[#Index].

Examples of the indirect addressing of a data field can be found in the Chapters
7.6.1 “Jump functions in the ladder logic” on page 242, 8.6.1 “Jump functions in the
function block diagram” on page 280, and 9.6.3 “Control statements” in Section
“FOR statement” on page 311.

Indirect addressing with PEEK and POKE (SCL)

PEEK and POKE address a value in an operand area whose address (memory loca-
tion) can be set during runtime. PEEK reads the value of an operand, POKE writes a
value to an operand. POKE_BLK transfers an indirectly addressed operand area
(Fig. 4.6).

The operand areas addressed with PEEK and POKE are inputs, outputs, memory
bits, and data blocks. The parameter AREA with the data type BYTE defines the oper-
and area together with the parameter DBNUMBER (Table 4.2). The byte address is at
the parameter BYTEOFFSET. For a binary operand, the bit number is added at the
parameter BITOFFSET. DBNUMBER, BYTEOFFSET, and BITOFFSET have data type
DINT. In the framework of the implicit data type conversion, these parameters can
also be supplied with tags that have other fixed-point data types.

PEEK reads the value of a digital operand and makes it available as a function value.
The preallocated data type is BYTE; it is used to read one byte. If two bytes should
be read, note the instruction PEEK_WORD; for four bytes, PEEK_DWORD.

PEEK_BOOL reads the value of a binary operand and makes it available as a function
value.

POKE writes the value specified at the parameter VALUE with data type BYTE,
WORD, or DWORD (corresponding to one, two, or four bytes) to the specified oper-
and area.

POKE_BOOL writes the value (data type BOOL) specified at the parameter VALUE to
the specified binary operand.

POKE_BLK transfers a source operand area, defined with the parameters AREA_SRC,
DBNUMBER_SRC, and BYTEOFFSET_SRC, to a operand area defined with the param-

4.2 Addressing

91

Fig. 4.6 Indirect addressing of operands with SCL

Indirect addressing of an operand with SCL

Indirect addressing of a memory area with SCL

SCL

SCL

Function:

Function:

Function:

Data types:

The operand area is defined at the AREA parameter with the data type BYTE: B#16#81 for
inputs, B#16#82 for outputs, B#16#83 for bit memories, and B#16#84 for data.

Data types:

The operand area is defined at the AREA parameter with the data type BYTE: B#16#81 for
inputs, B#16#82 for outputs, B#16#83 for bit memories, and B#16#84 for data.

#variable := PEEK (
AREA := ,

_Datentyp
...

DBNUMBER := ... ,
BYTEOFFSET := ...);

#bitvariable := PEEK_BOOL(
AREA := ,
DBNUMBER := ... ,
BYTEOFFSET := ... ,
BITOFFSET := ...);

...

POKE_BLK(
AREA_SRC := ,...
DBNUMBER_SRC := ... ,
BYTEOFFSET_SRC := ... ,
AREA_DEST := ,
DBNUMBER_DEST := ... ,
BYTEOFFSET_DEST := ... ,
COUNT := ...);

...

POKE(
AREA := ,...
DBNUMBER := ... ,
BYTEOFFSET := ... ,
VALUE := ...);

POKE_BOOL(
AREA := ,
DBNUMBER := ... ,
BYTEOFFSET := ... ,
BITOFFSET := ... ,
VALUE := ...);

...

PEEK and POKE address an operand whose address is only defined during runtime
(indirect addressing).

PEEK reads the value of an indirectly addressed
digital operand and makes it available as a
function value with the specified data type
(BYTE, WORD, DWORD).

PEEK_BOOL reads the value of an indirectly
addressed binary operand and makes it
available as a function value.

POKE writes the value of the tag specified
at the VALUE parameter to an indirectly
addressed digital operand.

POKE_BOOL writes the value of the bit tag
specified at the VALUE parameter to an
indirectly addressed bit operand.

The value zero is assigned to the DBNUMBER parameter at inputs, outputs, and bit memories,
at the operand area data with the data block number.

DBNUMBER, BYTEOFFSET, and BITOFFSET have a fixed-point data type, VALUE has a
bit string data type.

POKE_BLK transfers an indirectly addressed memory area to another indirectly
addressed memory area.

POKE_BLK reads the number of bytes specified
at the COUNT parameter from the source memory
area (SRC) and writes them to the destination
memory area (DEST).

The value zero is assigned to the DBNUMBER_xxx parameter at inputs, outputs, and bit
memories, at the operand area data with the data block number.

DBNUMBER_xxx, BYTEOFFSET_xxx, and COUNT have a fixed-point data type.

4 Variables and data types

92

eters AREA_DEST, DBNUMBER_DEST, and BYTEOFFSET_DEST. The number of bytes
transferred is specified in the COUNT parameter.

Example: The values in a bit memory address area should be deleted. The memory
range begins at the address #M_adr and is #M_anz bytes long. Both tags are
declared with the INT data type.

FOR #i := #M_adr TO #M_adr + #M_anz - 1 DO
 POKE(area := 16#83,
 dbnumber := 0,
 byteOffset := #i,
 value := 16#00);
END_FOR;

The tag #i with data type INT is used as a loop-control tag in the FOR statement and
contains the address of the memory byte that will now be overwritten with 16#00.

4.3 General information on data types

4.3.1 Overview of data types

Data types define the properties of tags, basically the representation of the contents
and the permissible ranges. STEP 7 provides predefined data types. The data types
are globally available and can be used in any block. A distinction is made between:

b Elementary data types which are predefined and can have a width of up to one
long word (64 bits)

b Structured data types, comprising a combination of elementary data types

b Parameter types for transfer of block parameters to functions and
function blocks

b PLC data types whose structure is defined by the user,

b System data types with a fixed structure and defined in STEP 7, and

b Hardware data types defined by the hardware configuration

When linking tags, e.g. when comparing or adding, or when supplying block
parameters, the tags involved must have the same or a comparable data type. The
block attribute IEC check governs the test for a comparable data type: If it is acti-
vated, the test is stricter. The block attribute Optimized block access can also play a

Table 4.2 Assignment of the AREA and DBNUMBER parameters

Operand area Assignment of the AREA
parameter

Assignment of the DBNUMBER
parameter

Inputs B#16#81 0

Outputs B#16#82 0

Bit memory B#16#83 0

Data B#16#84 Data block number

4.3 General information on data types

93

role in the application of data types. Further details can be found in the section
“Attributes” on page 129 of Chapter 5.3.2 “Editing block properties”.

The data types of tags can be converted. This may happen automatically with the
implicit data type conversion or with functions for (explicit) data type conversion
(see Chapter 11.6 “Conversion functions (Conversion of data type)” on page 376).

4.3.2 Implicit data type conversion

The implicit data type conversion occurs automatically when a function is executed
if the data types of the involved tags are compatible. It always applies during
implicit data type conversion that the bit length of the source data type must not
exceed that of the destination data type. For example, a tag with data format
DWORD (source data type) cannot be applied to a block parameter which expects
data type WORD (destination data type). The programmed bit length must agree
with the expected bit length for an in-out parameter. The scope of implicit data type
conversion depends on the block attribute IEC check (see Table 4.3).

For LAD and FBD, the implicit conversion from a smaller data width to a larger data
width is indicated with a gray symbol at the function inputs and outputs. To
improve clarity, implicit data type conversion can also be programmed with SCL.
The statement is Source data type_TO_Destination data type, for example

#var_word := BYTE_TO_WORD(#var_byte);

Where an implicit conversion is possible, the bit pattern of the source tags is trans-
ferred unchanged and right-justified to the target tag. Any free bit positions are filled
with zeros. For a possible implicit conversion to a floating-point data type, the format
is transformed (from “–1” to “–1.0”).

4.3.3 Overlaying tags (data type views)

A tag can be “overlaid” by a further data type. It is then possible to address the con-
tents of tags completely or partially using various data types.

You overlay a tag with a further data type using the keyword AT. You can overlay
several data type definitions over a tag which are differentiated by different names.
A default setting with fixed values (initialization) is not possible.

Example: You declare an input parameter in the block interface with Station as the
name and STRING[12] as the data type. You can overlay this input parameter with
an additional STRUCT data type with the name Length and the components maximal
and actual, each with the data type USINT (Fig. 4.7). You can now address the cur-
rent length of the tags #Station with #Length.actual in the block program.

You can only program the overlaying with further data types in the interface of logic
blocks. In addition, the block attribute Optimized block access must be deactivated.
The memory requirements of the overlaying data type definition must not be
greater than the “original” tag (the new data type must “fit” into the tag).

You use a overlaying data type definition like any other tag, but only locally in the
block. In the example, the calling block writes a string into the input parameter

4 Variables and data types

94

Table 4.3 Implicit data type conversion

to

from B
O

O
L

B
Y

TE

W
O

R
D

D
W

O
R

D

U
SI

N
T

U
IN

T

U
D

IN
T

SI
N

T

IN
T

D
IN

T

R
EA

L

LR
EA

L

TI
M

E

TO
D

D
A

TE

D
TL

C
H

A
R

ST
R

IN
G

BOOL

BYTE x x O O O KF O O O

WORD x O O KF O O

DWORD O KF O O

USINT O O O x x x x x x

UINT O O x x x x O

UDINT O x O

SINT KF x x x x

INT S KF x x x

DINT S S KF x O

REAL x

LREAL

TIME O O

TOD O O

DATE O O

DTL

CHAR O x

STRING

Implicit data type conversion is possible: X Independent of attribute IEC check
O With deactivated attribute IEC check
KF only with LAD and FBD with deactivated attribute IEC check
S only with SCL with deactivated attribute IEC check

Fig. 4.7 Example of declaration of a “overlaid” data type

4.4 Elementary data types

95

#Station; the superimposing data type definition as a USINT structure is not acces-
sible to it.

No overlaying with data types is possible for an organization block, because the
Optimized block access attribute is always active.

Only the tags in the temporary local data can be overlaid with additional data types
in an FC block.

In a function block, the tags with additional data types can be overlaid in all decla-
ration subsections of the block interface. If the in-out parameter has an elementary
data type, overlaying is only possible with an elementary data type. If the in-out
parameter has a structured data type, overlaying is only possible with a structured
data type.

4.4 Elementary data types

Elementary data types have a width of 1, 8, 16, 32, or 64 bits (Table 4.4). The data
types BCD16 and BCD 32 are not data types in the closer sense – they cannot be
assigned to a tag; they are only relevant to data type conversion.

4.4.1 Bit-serial data types BOOL, BYTE, WORD and DWORD

A tag with data type BOOL represents a bit value (e.g. input %I1.0). The tag can have
the value “0” or “1”, or FALSE or TRUE (Fig. 4.8).

A tag with data type BYTE occupies 8 bits. The individual bits have no significance.
The notation for constants is 16#00 to 16#FF.

A tag with data type WORD occupies 16 bits. The individual bits have no positional
significance. The notation for constants is 16#0000 to 16#FFFF. A constant of word
width can also be written as a 16-bit binary number (2#0000_…_0000 to
2#1111_…_1111) or as a 28-bit unsigned decimal number B#(0,0) to B#(255,255).

A tag with data type DWORD occupies 32 bits. The individual bits have no positional
significance. The notation for constants is 16#0000_0000 to 16#FFFF_FFFF. A con-
stant of doubleword width can also be written as a 32-bit binary number
(2#0000_..._0000 to 2#1111_..._1111) or as a 48-bit unsigned decimal number
B#(0,0,0,0) to B#(255,255,255,255).

4.4.2 BCD-coded numbers BCD16 and BCD32

BCD-coded numbers do not have their own data type. For a BCD number, use the
data type WORD or DWORD and enter only the numbers 0 to 9 or 0 and F for the sign
in hexadecimal form (16#xxxx or 16#xxxx_xxxx) (Fig. 4.9).

BCD-code numbers are used, for example, in association with the conversion func-
tions. The sign of a BCD-coded number is located in the left-justified (highest) de-
cade. Thus one decade is lost for the number range.

4 Variables and data types

96

Table 4.4 Overview of elementary data types

Bit string data types BCD and floating-point numbers

BOOL 1 bit 1-bit binary value
(0, 1, FALSE, TRUE)

BCD16
1)

16 bits 3 decades with sign
(–999 … +999)

BYTE 8 bits 8-bit binary value
(B#16#00 … B#16#FF)

BCD32
1)

32 bits 7 decades with sign
(–9 999 999 … +9 999 999)

WORD 16 bits 16-bit binary value
(W#16#0000 … W#16#FFFF)

REAL 32 bits 32-bit floating-point number
(±1.1810–38 … ±3.401038)

DWORD 32 bits 32-bit binary value
(DW#16#0000 0000 …
DW#16#FFFF FFFF)

LREAL 64 bits 64-bit floating-point number
(±2.2310–308 … ±1.8010308)

Unsigned fixed-point numbers Points in time and durations

USINT 8 bits Unsigned 8-bit fixed-point
number (0 … 255)

DATE 16 bits Date of day
(D#1990-01-01, …)

UINT 16 bits Unsigned 16-bit fixed-point
number (0 … 65 535)

TOD 32 bits Time of day
(TOD#00:00:00.000, …)

UDINT 32 bits Unsigned 32-bit fixed-point
number (0 … 4 294 967 296)

TIME 32 bits Duration in IEC format
(T#4h30m, 12 000ms, …)

Fixed-point numbers with sign Character

SINT 8 bits 8-bit fixed-point number
(–128 … +127)

CHAR 8 bits A character in ASCII code
(’a’, ’A’, ’1’, …)

INT 16 bits 16-bit fixed-point number
(–32 768 … +32 767)

DINT 32 bits 32-bit fixed-point number
(–2 147 483 648 …
+2 147 483 647)

1) Not a data type in a narrower sense; only relevant to data type conversion

Fig. 4.8 Bit assignments of data types BYTE, WORD, and DWORD

7 6 5 4 3 2 1 0 7

723

15

1531

0

016

8

824

Byte m

Byte mByte m

Bit number

Byte m+1

Byte m+1

Byte m+2 Byte m+3

Data type DWORD

Data type WORDData type BYTE

4.4 Elementary data types

97

In the case of a BCD-coded number present in a 16-bit word, the sign is in the high-
est decade, where only bit position 15 is relevant. Signal state “0” means that the
number is positive. Signal state “1” represents a negative number. The sign does
not influence the assignment of the individual decades. An equivalent assignment
applies to 32-bit words.

The numerical range available for 16-bit BCD numbers is 0 to ±999, and for 32-bit
BCD numbers 0 to ± 9 999 999.

4.4.3 Unsigned fixed-point data types USINT, UINT and UDINT

The data type USINT (unsigned short integer or fixed-point number) occupies one
byte. The numerical range extends from 20 to 28–1, i.e. from 0 to 255 or in hexadec-
imal notation from 00hex to FFhex (Fig. 4.10).

The data type UINT (unsigned integer or fixed-point number) occupies one word.
The numerical range extends from 20 to 216–1, i.e. from 0 to 65 535 or in hexadeci-
mal notation from 0000hex to FFFFhex.

Fig. 4.9 Bit assignments of data types BCD16 and BCD32

Fig. 4.10 Bit assignments of data types USINT, UINT and UDINT

Byte m

Byte m

Byte m+1

Byte m+1

Byte m+2 Byte m+3

10Sign

Sign: 0 0 0 0 = positive
1 1 1 1 = negative Sign

10

10

10

10

10

10

10 10 10 01234

0

5

1

6

2

7

7

15

15

2331 3

3

11

11

1927 4

4

12

12

2028 0

0

8

8

1624

BCD number, 3 decades

BCD number, 7 decades

31 ... 15 ...

15 ...7...

... 16 ... 0

... 0... 0

Data type UDINT

Data type UINTData type USINT

2 ...

2 ...2 ...

... 2

... 2... 2

7

77

0

00

2 ...

2 ...

... 2

... 2

15

15

8

8

2 223 162 231 24

4 Variables and data types

98

The data type UDINT (unsigned double integer or fixed-point number) occupies
one doubleword. The numerical range extends from 20 to 232–1, i.e. from 0 to
4 294 967 295 or in hexadecimal notation from 0000 0000hex to FFFF FFFFhex.

4.4.4 Fixed-point data types with sign SINT, INT and DINT

With the fixed-point data types with sign, the signal state of the highest bit rep-
resents the sign (V). Signal state “0” means that the number is positive. Signal state
“1” represents a negative number. The representation of a negative number is as a
two's complement.

The data type SINT (short integer or fixed-point number) occupies one byte. The nu-
merical range extends from –27 to +27–1, i.e. from –256 to +255 or in hexadecimal
notation from 80hex to 7Fhex (Fig. 4.11).

The data type INT (integer or fixed-point number) occupies one word. The numeri-
cal range extends from –215 to +215–1, i.e. from –32 768 to +32 767 or in hexadeci-
mal notation from 8000hex to 7FFFhex.

The data type DINT (double integer or fixed-point number) occupies one doubleword.
The numerical range extends from –231 to +231–1, i.e. from –2 147 483 648 to
+2 147 483 647 or in hexadecimal notation from 8000 0000hex to 7FFF FFFFhex.

4.4.5 Floating-point data types REAL and LREAL

A tag with data type REAL or LREAL represents a fractional number which is saved
as a floating-point number. A fractional number is entered either as a decimal frac-
tion (e.g. 123.45 or 600.0) or in exponential form (e.g. 12.34e12 corresponding to
12.34·1012). The representation comprises 7 or 17 relevant positions (digits) which
are positioned in exponential form in front of the “e” or “E”. The data following “e”
or “E” is the exponent to base 10. Conversion of the REAL or LREAL tags into the
internal representation of a floating-point number is carried out by the program
editor. Table 4.5 shows the internal range limits of a floating-point number.

The CPUs calculate with the full accuracy of the floating-point numbers. The dis-
play on the programming device may deviate from the theoretically exact represen-
tation as a result of rounding-off errors during the conversion.

Fig. 4.11 Bit assignments of data types SINT, INT and DINT

31 30 ... 15 ...

15 14 ...7 6 ...

... 16 ... 0

... 0... 0

Data type DINT

Data type INTData type SINT

2 ...

2 ...2 ...S S

S ... 2

... 2... 2

7

76

0

00

2 ...

2 ...

... 2

... 2

15

14

8

8

2 223 162 230 24

S = sign:
0 = positive
1 = negative

4.4 Elementary data types

99

Data type REAL

The valid range of values of a REAL tag (normalized 32-bit floating-point number)
is between the limits:

–3,402 823 10+38 to –1.175 494 10–38

±0
+1.175 494 10–38 to +3.402 823 10+38

A tag with data type REAL consists internally of three components: the sign, the
8-bit exponent to base 2, and the 23-bit mantissa. The sign can have the values “0”
(positive) or “1” (negative). The exponent is saved increased by a constant (bias,
+127) so that it has a range of values from 0 to 255. The mantissa represents the
fractional part. The whole number part of the mantissa is not stored, because it is
always equal to 1 within the valid range of values (Fig. 4.12).

Table 4.5 Internal range limits of a floating-point number

Sign Exponent
with REAL

Exponent
with LREAL

Mantissa Meaning

0 255 2047 Not equal to 0 Not a valid floating-point number
(+NaN, Not a Number)

0 255 2047 0 +Inf, Infinity

0 1 … 254 1 … 2046 Any Positive, normalized floating-point number

0 0 0 Not equal to 0 Positive, denormalized floating-point number

0 0 0 0 + Zero

1 0 0 0 – Zero

1 0 0 Not equal to 0 Negative, denormalized floating-point number

1 1 … 254 1 … 2046 Any Negative, normalized floating-point number

1 255 2047 0 – Inf, Infinity

1 255 2047 Not equal to 0 Not a valid floating-point number
(–NaN, Not a Number)

Fig. 4.12 Bit assignments of data types REAL and LREAL

31 30 ...

63 62 ...

S = sign of mantissa

... 23

... 52

Data type REAL

Data type LREAL

Exponent

Exponent

Mantissa

Mantissa

2 ...

2 ...

S

S

... 2

... 2

7

10

0

0

22 ...

51 ...

... 0

... 0

2 ...

2 ...

2

2

... 2

... 2

–2

–2

–1

–1

–23

–52

4 Variables and data types

100

Data type LREAL

The data type LREAL cannot be used in the PLC tag table, and thus not in association
with global tags in the following operand areas: inputs (I), outputs (Q) and bit mem-
ories (M).

The valid range of values of a LREAL tag (normalized 64-bit floating-point number)
is between the limits:

–1,797 693 134 862 3158 10+308 to –2.225 073 858 507 2014 10–308

±0
+2.225 073 858 507 2014 10–308 to +1.797 693 134 862 3158 10+308

A tag with data type LREAL consists internally of three components: the sign,
the 11-bit exponent to base 2 and the 52-bit mantissa. The sign can have the
values “0” (positive) or “1” (negative).

The exponent is saved increased by a constant (bias, +1023) so that it has a range of
values from 0 to 2047. The mantissa represents the fractional part. The whole num-
ber part of the mantissa is not stored, because it is always equal to 1 within the valid
range of values.

4.4.6 Data type CHAR

A tag with data type CHAR (character) occupies one
byte. The data type CHAR represents a single character
which is saved in ASCII format. Example: 'A'. A single
character of a tag with the data type STRING has the
data type CHAR and can also be used accordingly.
Example: If Author is the name of the string with the
content 'Berger', then the tag Author[1] has the value 'B'
and the data type CHAR (Fig. 4.13).

4.4.7 Data type DATE

A tag with data type DATE is saved in a word as an unsigned fixed-point number. The
content of the tag corresponds to the number of days since 01.01.1990. The repre-
sentation contains the year, month, and day, each separated by a dash (Fig. 4.14).
Examples:

DATE#1990-01-01 (= W#16#0000)
D#2168-12-31 (= W#16#FF62)

4.4.8 Data type TIME

A tag with data type TIME occupies a doubleword. The representation contains the
data for days (d), hours (h), minutes (m), seconds (s) and milliseconds (ms). Indi-
vidual time units can be omitted. If more than one time unit is specified, the values
for the time units are limited: Days from 0 to 24, hours from 0 to 23, minutes and
seconds from 0 to 59, and milliseconds from 0 to 999.

Fig. 4.13 Data type CHAR

7 6 5 4 3 2 1 0

Byte m

ASCII code

Data type CHAR

4.5 Structured data types

101

The content of the tag is interpreted as milliseconds (ms) and saved as a 32-bit
fixed-point number with sign. The range of values extends from
TIME#–24d20h31m23s648ms (T#–24d20h31m23s648ms) to
TIME#24d20h31m23s647ms (T#24d20h31m23s647ms).

4.4.9 TIME_OF_DAY (TOD) data type

A tag with data type TIME_OF_DAY occupies a doubleword. It contains the number
of milliseconds since the beginning of the day (0:00) as an unsigned fixed-point
number. The representation contains the data for hours, minutes, and seconds,
each separated by a colon. The specification of milliseconds, which follows the sec-
onds and is separated by a dot, can be omitted (Fig. 4.14). Examples:

TIME_OF_DAY#00:00:00 (= DW#16#0000_0000)
TOD#23:59:59.999 (= DW#16#0526_5BFF)

4.5 Structured data types

Structured data types consist of a combination of elementary data types under one
name (Table 4.6). These data types can only be used locally in the interface of logic
blocks and in data blocks; they are not approved for the following operand areas:
inputs (I), outputs (Q), and bit memories (M) in the PLC tag table.

4.5.1 Data type DTL

The data type DTL (date and time long) contains the date (year, month, day, week-
day) and the time (hour, minute, second, nanosecond). Saving in the memory com-
mences at a word limit (at a byte with even address).

Fig. 4.14 Bit assignment of data types DATE, TIME, and TIME_OF_DAY (TOD)

31 30 ...

31 ...

15 ...

15 ...

... 16

... 16

... 0

... 0

Data type TIME

Data type TIME_OF_DAY (TOD)

2 ...

2 ...

V ... 2

... 2

7

7

0

0

2 ...

2 ...

... 2

... 2

15

15

8

8

2 ...

2 ...

... 2

... 2

23

23

16

16

2 ...

2 ...

... 2

... 2

30

31

24

24

S = Sign: 0 = positive
1 = negative

15 0

2 27 02 215 8

 Data type DATE

4 Variables and data types

102

The components of the data type DTL can also be addressed individually
(Fig. 4.15). Example: In a data block “Warehouse”, a DTL tag with the name Removal
is declared. If you wish to scan the weekday, use the component name “Ware-
house”.Removal.WEEKDAY.

4.5.2 Data type STRING

The data type STRING represents a string consisting of two bytes for the length data
and up to 254 bytes for the characters in ASCII code. Saving in the memory com-

Table 4.6 Overview of structured data types

Data type Length Description, example

DTL 12 bytes Date and time
Example: DTL#2009-10-01-11:55:0:0 (October 1, 2009, five to twelve)

STRING 2+n bytes A string with n characters.
Examples: 'Hans', 'Motor switched off'

ARRAY Variable A combination of several equivalent data types.
Example: The tag Setpoint has the data type ARRAY[132] of INT.

The individual components are then:
Setpoint[1]; Setpoint[2]; … ; Setpoint[32]

STRUCT Variable A combination of several different data types.
Example: The tag Valve has the data type STRUCT.

It can then contain the components:
Valve.Switch_on; Valve.Switch_off; Valve.Fault; etc.

Fig. 4.15 Structure of data type DTL

Byte

Byte n+5

Byte n+2

1970 to 2554

1 to 12

1 to 31
1 = Sunday to
7 = Saturday

0 to 23

0 to 59

0 to 59

0 to 999 999 999

RangeData typeComponentAssignmentAddress

Byte n+1

Byte n+6

Byte n+3

Byte n+7

Byte n+4

Byte n+8

Byte n+10

Byte n+9

Byte n+11

UINTYEAR

USINTMONTH

USINTDAY

USINTWEEKDAY

USINTHOUR

USINTMINUTE

USINTSECOND

UDINTNANOSECOND

n = even

n
1)

1)

Data type DTL

Month

Day

Weekday

Minutes

Hours

Seconds

Year

Nanoseconds

4.5 Structured data types

103

mences at a byte with even address. The program editor reserves an even number
of bytes for a string.

When creating a STRING tag, its maximum length is defined in square brackets. The
current length is entered for the default setting or when processing the string (the
actually used length of the string = number of valid characters). The maximum
length is present in the first byte of the string, the second byte contains the actual
length; this is followed by the characters in ASCII format (Fig. 4.16).

Example: The tag Machine is to be defined with a maximum length of 12 characters
and should have 'Drill' as the default setting.

The first byte of the tag then has the value 12, the second byte the value 6, the third
byte the character 'B' etc.

When declaring a STRING tag as the block parameter of a function (FC), only a
length of 254 can be assigned. If no length is specified in the declaration of a
STRING tag, the program editor applies the standard length of 254 characters.

A STRING tag cannot be assigned a default value when declared in the temporary lo-
cal data. The content of the tag is then undefined. Prior to use, the tag must first be
assigned a valid content (per program), for example with the function S_CONV.

A constant with data type STRING is written with single quotation marks, for exam-
ple 'Hans Berger'. If the single quotation mark is to be a character of the tag, it must
be preceded by a dollar sign ($').

The characters in a STRING tag can also be addressed individually. The first charac-
ter (the third byte) is accessed using Tag_name[1], the n-th character using

Fig. 4.16 Structure of STRING data type

Name Data type Default value

Machine STRING[12] 'Drill'

n

n+1

n+2

n+3

...

n+m+1

...

n+k+1

(k)

(m, m ≤ k)

Actual
length (m)

Maximum
length (k)

Maximum length

Actual length

1st character

2nd character

...

m-th character

...

...

Data type STRING

n = even 1)

1) 0 to 254

0 to 254

RangeData type

USINT

USINT

CHAR

CHAR

CHAR

CHAR

CHAR

CHAR

Byte no.

4 Variables and data types

104

Tag_name[n]. The individual components have the data type CHAR. In the above ex-
ample, the tag Machine[3] has the character 'h'.

Special functions are available for processing STRING tags, for example to separate
a partial string or to combine two STRING tags into a single one (see Chapter 11.9
“Processing of strings (Data type STRING)” on page 398).

4.5.3 Data type ARRAY

The data type ARRAY represents a data structure comprising a fixed number of com-
ponents with the same data type Fig. 4.17). For the components, all data types
except ARRAY are permissible.

A tag with data type ARRAY commences at a word limit (at a byte with even address).
Components with data type BOOL commence in the least significant bit; compo-
nents with data type BYTE and CHAR in the right byte. The individual components
are listed consecutively. The program editor reserves an even number of bytes for a
field tag.

The data type ARRAY can have up to 65 536 components. When creating an ARRAY
tag, the number range of the components is specified in square brackets, and the
data type following the keyword OF. The number range extends from –32 768 to
32 767. The lower range value must be smaller than the upper value.

Example: A tag with the name Measured_value is to have 16 components of data
type INT which are numbered commencing with 1.

The components of an ARRAY tag can also be addressed individually, and can be
handled like tags with the same data type. For example, the component Mea-
sured_value[10] on a block parameter can be created with the data type INT.
Addressing with a variable index is also possible: Measured_value[#var_index] (see
Chapter 4.2.7 “Indirect addressing” Section “Indirect addressing of field compo-
nents” on page 90).

4.5.4 Data type STRUCT

The STRUCT data type represents a data structure comprising a fixed number of
components with different data types (Fig. 4.18). For the individual components, all
data types are permissible.

A tag with data type STRUCT commences at a word limit (at a byte with even ad-
dress), followed by the components in the declared sequence. Components with the

Name Data type Start value

Measured_value ARRAY[1..16] OF INT

 Measured_value[1] INT 0

 Measured_value[2] INT 0

 ...

 Measured_value[16] INT 0

4.5 Structured data types

105

Fig. 4.17 Structure of data type ARRAY

Byte n

Byte n

Byte n

Bit number

Byte n+1

Byte n+1

Byte n+1

Byte n+2

Byte n+2

Byte n+3

Byte n+3

Byte n+4

Byte n+5

7 6 5 4 3 2 1 0

Array of
bit-wide components

Array of
byte-wide componentsb

Array of
word-wide or doubleword-wide
components

n = even

*)

*)

*)

*)

8

...

7

...

6

...

5

...

4

12

3

11

2

10

1

9

Byte 1

Byte 2

Byte 3

etc.

Word 1

Word 2

etc.

Byte n+4

Byte n

Byte n+5

Byte n+1

Byte n+6

Byte n+2

Byte n+7

Byte n+3

Byte n+8

Byte n+10

Byte n+9

Byte n+11

1st dimension2nd dimension

2nd dimension

n = even

*)

*)

Data type ARRAY (multi-dimensional)

#Arraytag[1,1,1]

#Arraytag[1,1,2]

#Arraytag[1,2,1]

#Arraytag[1,2,2]

#Arraytag[1,3,1]

#Arraytag[1,3,2]

#Arraytag[2,1,1]

#Arraytag[2,1,2]

#Arraytag[2,2,1]

#Arraytag[2,2,2]

#Arraytag[2,3,1]

#Arraytag[2,3,2]

Data type ARRAY (one-dimensional)

2nd dimension

Example of the byte assignments
of the #Arraytag tags with the data
type ARRAY[1..2,1..3,1..2] OF BYTE

The memory location of an ARRAY tag always commences at a byte with even address.
The program editor always reserves an even number of bytes for an ARRAY tag.

4 Variables and data types

106

Fig. 4.18 Structure of data type STRUCT

Byte n+6

Byte n+2

Byte n+11

Byte n

Byte n+7

Byte n+3

Byte n+1

Byte n+10

Byte n+8

Byte n+4

Byte n+9

Byte n+5

Byte n+12

Byte ...

7 6 5 4 3 2 1 0

Bit components

Bit components

Byte component

Byte components

Word components

or

doubleword components

n = even

*)

*)

8

...

...

7

...

...

6

...

...

5

...

...

4

12

4

3

11

3

2

10

2

1

9

1

Byte 1

Byte 1

Byte 2

Byte 3

(Filler byte)

Word 1

Word 2

etc.

Data type STRUCT

…

Byte m

…

Byte n

Byte q

…

…

…

…

Byte p

Byte s

…

*)

*)

*)

*)

*) STRUCT

STRUCT

Data type 7

Data type 1

Data type 3

Data type 8

Data type 10

Data type 12

Data type 5

Data type 2

Data type 4

Data type 9

Data type 11

Data type 6

Data type STRUCT, nested structure

Byte with even number*)

A tag of data type STRUCT commences at a byte with even address and always occupies an even
number of bytes.

A tag of data type STRUCT commences at
a byte with even address and always occupies
an even number of bytes.

4.6 Parameter types

107

data type BOOL commence in the least significant bit of the next vacant byte, com-
ponents with the data type BYTE or CHAR in the next vacant byte. Components with
other data types commence at a word limit. The program editor reserves an even
number of bytes for a STRUCT tag.

When declaring a STRUCT tag, the tag name with the STRUCT data type is specified
first, followed underneath by the individual components with their own data type.

Example: A tag with the name Fan is to comprise four components: “Switch on fan”
(BOOL), “Switch off fan” (BOOL), “Speed” (INT) and “Delay” (TIME).

A component of a STRUCT tag can also be addressed individually by positioning the
name of the structure, separated by a dot, in front of the component name.
A STRUCT component can be handled like a tag with the same data type. For exam-
ple, the component Fan.Speed on a block parameter can be created with the data
type INT.

4.6 Parameter types

The parameter types are additional data types for block parameters. The parameter
types comprise, for example, the data types for the transfer of IEC timer functions
and IEC counter functions, the transfer of any tags, and the data type for the func-
tion value of a function. PLC data types, system data types, and hardware data types
can be used for the block parameters.

4.6.1 Parameter types for IEC timer functions

The following data types are available for the transfer of IEC timer functions to the
block interface:

Name Data type Start value

Fan STRUCT

 Switch on fan BOOL false

 Switch off fan BOOL false

 Speed INT 0

 Delay TIME T#0ms

Timer function Data type of the duration IEC data type

Pulse generation TIME TP_TIME

ON delay TIME TON_TIME

OFF delay TIME TOF_TIME

Accumulating ON delay TIME TONR_TIME

4 Variables and data types

108

The structure of the data types corresponds to the structure of the system data type
IEC_TIMER (see Chapter 4.8.1 “IEC_TIMER system data type” on page 110).

The data types can be used in the declaration sections Input (input parameters),
InOut (in-out parameters), and Static (static local data). If an IEC timer function is
transferred as input parameter, its components can only be scanned. You supply a
block parameter with the data type of an IEC timer function with the name of the
instance data, either with the data block if the call is created as a single instance, or
with the instance name if the call is created as a local instance in a function block.

The data types for IEC timer functions can also be used in PLC data types.

4.6.2 Parameter types for IEC counter functions

Depending on the counter type and the data type of the count value, there are the
following data types for the transfer of IEC counter functions to the block interface:

The structure of the data types corresponds to the structure of the system data type
IEC_xCOUNTER (see Chapter 4.8.2 “IEC_COUNTER system data type” on page 112).

The data types can be used in the declaration sections Input (input parameters),
InOut (in-out parameters), and Static (static local data). If an IEC counter function
is transferred as input parameter, its components can only be scanned. You supply
a block parameter with the data type of an IEC counter function with the name of
the instance data, either with the data block if the call is created as a single instance,
or with the instance name if the call is created as a local instance in a function block.

The data types for IEC counter functions can also be used in PLC data types.

4.6.3 Parameter type VARIANT

A block parameter with data type VARIANT contains a pointer to a tag or a data area.
Tags of all data types are approved for a block parameter of type VARIANT. The tags
(operands or data types) which can be connected to the block parameter or which
are meaningful are defined by the program within the called block.

Counter type Data type of the count
value

IEC data type

Up counter SINT
INT
DINT

CTU_SINT
CTU_INT
CTU_DINT

Down counter SINT
INT
DINT

CTD_SINT
CTD_INT
CTD_DINT

Up/down counter SINT
INT
DINT

CTUD_SINT
CTUD_INT
CTUD_DINT

4.7 PLC data types

109

In the programming languages LAD and FBD, a block parameter can be assigned
this parameter type. The only type of further processing possible is the “passing-
on” to block parameters of called blocks.

4.6.4 Parameter type VOID

The VOID parameter type (= without type) is used for the value of functions FC if the
function value is not to be displayed. Further details can be found in Section 5.3.5
“Block interface” on page 133.

4.7 PLC data types

A PLC data type is one with its own name. It is structured as the STRUCT data type,
i.e. it consists of individual components, usually with different data types. You can
use a PLC data type if you wish to assign a name to a data structure, for example
because you frequently use the data structure in your program. A PLC data type is
valid throughout the CPU (global).

Programming a PLC data type

All PLC data types are combined in the project tree under a PLC station in the PLC
data types folder. To create a PLC data type, double-click on Add new data type in the
PLC data types folder. Enter the individual components of the PLC data type in
sequence in the declaration table with name, data type, default value, and comment
(Fig. 4.19).

You can change the standard name User data type_n, where n is a consecutive num-
ber: Select the PLC data type in the project tree with the right mouse button, select
the Properties command from the shortcut menu, and enter the new name under
General. The name must not already be assigned to a PLC tag, a constant, or a block.
The operand ID is UDT (user-defined data type), the number is assigned by the pro-
gram editor.

Fig. 4.19 Example of programming a PLC data type

4 Variables and data types

110

Using a PLC data type

A PLC data type can be assigned to any tag which is present in a global data block
or in the interface of a logic block. The default setting for the PLC data type can
be changed. You then address the individual components of the tag using
#var_name.comp_name (Fig. 4.20).

With a PLC data type as the basis, you can also generate a data block: In the project
tree, double-click on Add new block in the Program blocks folder. Click on the Data
block button in the Add new block window, and select the PLC data type from the
Type drop-down list. The data structure of this type data block is then defined by
the PLC data type and can no longer be changed. The default setting is imported
by the PLC data type and can be changed.

4.8 System data types

System data types (SDT) are predefined data types which – like the data type
STRUCT – consist of a fixed number of components each with different elementary
data types. System data types are delivered together with STEP 7 and cannot be
modified.

The system data types can only be used together with certain functions or state-
ments. Table 4.7 shows a selection of system data types.

4.8.1 IEC_TIMER system data type

The instance data of an IEC timer function is structured according to the system
data type IEC_TIMER. If you use the instructions TP, TON, TOF, or TONR, the
program editor – depending on the specification Single instance or Multi-instance –

Fig. 4.20 Example of application of a PLC data type

4.8 System data types

111

creates a data block or a local instance with the data type IEC_TIMER. You can also
create a type data block or a local instance with the data type IEC_TIMER yourself.
IEC_TIMER consists of the components shown in Table 4.8.

You can address the individual components of the data type as usual as the data tag
“Data block”.component or as the local tag #LocalInstance.component. Example: You
create a local instance with the name #Duration and the data type IEC_TIMER. You
can then scan the time status with #Duration.Q.

Table 4.7 Selection of system data types (SDT)

Name SDT number Contains the data structure for: Is used by:

IEC_TIMER SDT 31 A time function Time functions TP, TON, TONR, TOF

IEC_SCOUNTER SDT 69 A counter with data type SINT Counter functions CU, CD, CUD

IEC_COUNTER SDT 30 A counter with data type INT Counter functions CU, CD, CUD

IEC_DCOUNTER SDT 70 A counter with data type DINT Counter functions CU, CD, CUD

IEC_USCOUNTER SDT 73 A counter with data type USINT Counter functions CU, CD, CUD

IEC_UCOUNTER SDT 72 A counter with data type UINT Counter functions CU, CD, CUD

IEC_UDCOUNTER SDT 74 A counter with data type UDINT Counter functions CU, CD, CUD

Conditions SDT 513 The data transfer PtP function RCV_GFG

TADDR_Param SDT 514 The addressing of the communi-
cation partner in UDP

Open User Communication

TCON_Param SDT 515 The connection descriptions Open User Communication

ErrorStruct The local error handling GetError and GetErrorID

Table 4.8 Structure of the system data types IEC_TIMER and IEC_xCounter

IEC_TIMER IEC_xCOUNTER

Name Data type Designation Name Data type Designation

ST TIME (Internal) CU BOOL Up counter input

PT TIME Preset time CD BOOL Down counter input

D BOOL Reset input

ET TIME Elapsed time LD BOOL Load input

QU BOOL Status up

RU BOOL (Internal) QD BOOL Status down

IN BOOL Start input PV *) Default value

Q BOOL Time status CV *) Count value

*) Depends on system data type
(SINT, INT, DINT, USINT, UINT, UDINT)

4 Variables and data types

112

4.8.2 IEC_COUNTER system data type

The instance data of an IEC counter function is structured depending on the
data type of the counter value according to the system data types C_SCOUNTER
(SINT data type), IEC_COUNTER (INT), IEC_DCOUNTER (DINT), IEC_US_COUNTER
(USINT), IEC_UCOUNTER (UINT), and IEC_UDCOUNTER (UDINT).

If you use one of the statements CTU, CTD, or CTUD, the program editor – depend-
ing on the specification Single instance or Multi-instance – creates a data block or a
local instance with the data type IEC_xCOUNTER. You can also create a type data
block or a local instance with the data type IEC_xCOUNTER yourself. IEC_xCOUNTER
consists of the components shown in Table 4.8.

You can address the individual components of the data type as usual as the data tag
“Data block”.component or as the local tag #LocalInstance.component. Example: You
create a local instance with the name Number and the data type IEC_COUNTER. You
can then scan the count value with #Number.CV.

4.8.3 TCON_Param data type

The data type TCON_Param contains the structure of the connection data either for
the communication connection to the partner device (TCP native and ISO-on-TCP
protocols) or for the connection to the communication access point of the local
operating system (UDP protocol). You require a data block with this structure for
each connection (Table 4.9).

4.8.4 TADDR_Param data type

The data type TADDR_Param contains the structure of the remote partner's address
information when using the UDP protocol. With this data structure you configure a
data area in a data block which contains the addresses of the receiver stations and
parameterize this data area at the ADDR parameter of the send block TUSEND. At
the receive block TURCV you parameterize a data area with this structure at the
ADDR parameter which accommodates the addresses of the transmitting station
(Table 4.10).

4.8.5 Data type ErrorStruct

The data type ErrorStruct is a data structure with predefined assignment. The data
type is used by the functions for error evaluation GetError and GetErrorID. Infor-
mation concerning errors is output with this structure (Table 4.11). A tag with data
type ErrorStruct commences at a word limit (at a byte with even address).

Additional information is output depending on the assignment of the structure
component MODE (Table 4.12). When declaring an ErrorStruct tag, the data type is
selected from the drop-down list. The components can also be addressed individu-
ally: Tag_name.Component_name.

4.8 System data types

113

Table 4.9 Structure of data type TCON_Param

Byte Parameter Data type Description

0 and 1 block_length WORD Length of TCON_PAR (fixed at 64 bytes)

2 and 3 id WORD Connection ID

4 connection_type BYTE Protocol variant
B#16#11: TCP
B#16#12: ISO-on-TCP
B#16#13: TCP (compatibility mode)

With UDP: B#16#13

5 active_est BOOL Type of connection establishment
FALSE: Passive connection establishment
TRUE: Active connection establishment

With UDP: FALSE

6 local_device_id BYTE Communication module ID

7 local_tsap_id_len BYTE Length of parameter local_tsap_id

8 rem_subnet_id_len BYTE B#16#00

9 rem_staddr_len BYTE Length of parameter rem_staddr

With UDP: B#16#00

10 rem_tsap_id_len BYTE Length of parameter rem_tsap_id

With UDP: B#16#00

11 next_staddr_len BYTE Length of parameter next_staddr

With UDP: B#16#00

12to27 local_tsap_id ARRAY [1..16] OF BYTE Depending on connection:
local port number or local TSAP ID

With UDP: local port number

28to33 rem_subnet_id ARRAY [1..6] OF BYTE B#16#00

34to39 rem_staddr ARRAY [1..6] OF BYTE IP address of remote partner

With UDP: B#16#00

40to55 rem_tsap_id ARRAY [1..16] OF BYTE Depending on connection:
remote port number or remote TSAP ID

With UDP: B#16#00

56to61 rem_staddr ARRAY [1..6] OF BYTE CP slot

With UDP: B#16#00

62 and 63 spare WORD W#16#0000

Table 4.10 Structure of data type TADDR_Param

Byte Parameter Data type Description

0to3 rem_ip_addr ARRAY [1..4] OF BYTE IP address of remote partner

4 and 5 rem_port_nr ARRAY [1..2] OF BYTE Port no. of remote partner

6 and 7 spare ARRAY [1..2] OF BYTE B#16#00

http://pnap.ir/siemens-s71200-price-list/

4 Variables and data types

114

Table 4.11 Structure of ErrorStruct data type

Name Data type Note, assignment

ERROR_ID WORD Error ID (see text)

FLAGS BYTE 16#00

REACTION BYTE Reactions to error
16#00: none, no writing (write error)
16#01: replace, read a zero (read error)
16#02: skip statement (system error)

CODE_ADDRESS CREF

BLOCK_TYPE BYTE Type of block in which the error occurred
16#01: OB, 16#02: FC, 16#03: FB

CODE_BLOCK_NUMBER UINT Number of block in which the error occurred

OFFSET UDINT Internal memory address at which the error occurred

MODE BYTE Assignment for the significance of the supplied data (A) to (E)
(see text)

OPERAND_NUMBER UINT Internal operand number of operation

POINTER_NUMBER_LOCATION UINT Internal pointer address of operation (A) (see text)

SLOT_NUMBER_SCOPE UINT Internal address in memory (B) (see text)

DATA_ADDRESS NREF

AREA BYTE Addressed memory area on occurrence of error (C) (see text)

DB_NUMBER UINT Number of data block on occurrence of error, otherwise zero
(D) (see text)

OFFSET UDINT Bit offset on occurrence of error (E) (see text)

Table 4.12 Information output depending on access type MODE

MODE (A) (B) (C) (D) (I)

16#00 – – – – –

16#01 – – – – OFFSET

16#02 – – AREA – –

16#03 LOCATION SCOPE – NUMBER –

16#04 – – AREA – OFFSET

16#05 – – AREA DB_NUMBER OFFSET

16#06 POINTER_NUMBER_
LOCATION

SLOT_NUMBER_
SCOPE

AREA DB_NUMBER OFFSET

16#07 POINTER_NUMBER_
LOCATION

SLOT_NUMBER_
SCOPE

AREA DB_NUMBER OFFSET

Memory area Assignment of AREA component

System memory (temporary
local data)

16#40…4E, 16#86, 16#87, 16#8E, 16#8F, 16#C0…CE

Process image input (I) 16#81

Process image output (Q) 16#82

Bit memory (M) 16#83

Data operand (DB) 16#84, 16#85, 16#8A, 16#8B

4.9 Hardware data types

115

The assignment of the ERROR_ID and handling of the error evaluation is described
in Section 5.8.4 “Local error handling” on page 169.

4.8.6 TimeTransformationRule data type

The data type TimeTransformationRule contains the correction values for setting
the local time on the CPU (see Chapter 5.6.6 “Time” on page 148). It is required
in conjunction with the SET_TIMEZONE function to calculate the local time from
the module time (time data of the real-time clock) and to make the switch
between daylight saving and standard time (Table 4.13).

4.9 Hardware data types

Hardware data types refer to all those which can accept the constants in the default
tag table in the System constants tab. These constants are used to address hardware
and software objects in the program. The data type and the value are predefined,
the name can be changed in the object properties.

Fig. 4.21 shows the System constants tab with a selection of hardware data types.

Table 4.13 Data structure for TimeTransformationRule

Byte Name Data type Note

0 Bias INT Correction value for the time zone to UTC in minutes

2 DaylightBias INT Correction value daylight saving/standard time
in minutes

Beginning of daylight saving time :

4 DaylightStartMonth USINT Month

5 DaylightStartWeek USINT Week (1 = first in month)

6 DaylightStartWeekday USINT Weekday (1 = Sunday)

7 DaylightStartHour USINT Hour

8 DaylightStartMinute USINT Minute

Beginning of standard time :

9 StandardStartMonth USINT Month

10 StandardStartWeek USINT Week (1 = first in month)

11 StandardStartWeekday USINT Weekday (1 = Sunday)

12 StandardStartHour USINT Hour

13 StandardStartMinute USINT Minute

14 TimeZoneName STRING[80] Name of time zone,
e.g. ’(GMT +01:00) Amsterdam, Berlin, Bern, Rome, ...’

4 Variables and data types

116

Fig. 4.21 Examples of hardware data types

5.1 Operating modes

117

5 Edit user program

5.1 Operating modes

A CPU 1200 recognizes the following operating modes:

b Deenergized, when the power supply is switched off

b STOP if the user program is not being executed

b STARTUP, when the startup program is being executed

b RUN, when the main program and the interrupt program are being executed

b Faulty, if an internal error prevents further execution

Fig. 5.1 illustrates the operating mode transitions: a After switching on, the CPU is
in the STOP mode. If the corresponding conditions are fulfilled, the CPU changes to
the STARTUP mode s and subsequently to the RUN mode d. If a “serious” error oc-
curs during execution in STARTUP or RUN, or if the CPU is stopped by an operation
on the programming device, the CPU returns to the STOP mode f g.

The RUN and STOP modes are indicated on the CPU module by the RUN/STOP LED:
the LED lights up yellow continuously in the STOP mode, and green in the RUN
mode.

You define the CPU's response after the power supply has been switched on by set-
ting the CPU parameters: you can specify whether the CPU is to remain in the STOP
mode or immediately commence with execution of the user program.

You can read and control the operating modes using a programming device con-
nected to the CPU: the CPU panel in Online Tools replaces the (mechanical) mode
switch (see Chapter 13.3.5 “Online tools” on page 439).

Fig. 5.1 Operating modes of a CPU 1200

STOP

STARTUP

RUN

Switching on
When the device is switched off,
switching off or with a “serious” error,
the CPU can change from STARTUP
or RUN to STOP.

After switching on, the CPU is in STOP
mode, and changes via STARTUP to RUN.

Operating modes of a CPU 1200

5 Edit user program

118

5.1.1 STOP mode

The STOP mode is reached:

b When the CPU is switched on

b If a “serious” error occurs

b If the STP system function is executed

b If a stop request arrives from the programming device

The CPU enters the cause of the STOP operating mode into the diagnostics buffer.
In this operating mode, you can also read out the CPU information using a pro-
gramming device in order to find the reason for the stop.

The user program is not executed in STOP mode. The CPU takes over the device set-
tings – either the values you have set with the hardware configuration when param-
eterizing the CPU, or the standard settings – and sets the connected modules to the
parameterized initial state.

In the STOP mode, the CPU can passively execute one-way communication if, for
example, data is requested or sent by another CPU via S7 communication. The real-
time clock continues to run in the STOP mode.

You can parameterize the CPU in the STOP operating mode, for example set the IP
address, transfer or modify the user program, and you can also carry out a memory
reset for the CPU.

Disabling of output modules

All output modules are disabled when in the STOP and STARTUP operating modes
(OD or BASP signal, output disable or disable command output). Disabled output
modules output a zero signal or – if configured accordingly – a substitute value.

Although writing to the modules influences the signal memories on them, it does
not switch the signal states “to the outside” to the module terminals. The output
modules are only enabled when the RUN operating mode is reached.

In the STOP operating mode, you can cancel disabling of the output modules for
testing purposes (see Chapter 13.4.9 “Enable peripheral outputs and “Modify now””
on page 451).

5.1.2 STARTUP mode

Before the CPU changes from the STOP mode to the RUN mode, it runs through the
STARTUP mode. In the STARTUP mode, the CPU initializes itself and the modules
controlled by it. If the CPU detects an error in the STARTUP mode, e.g. if an invalid
memory card is inserted, it returns to the STOP mode.

You can define the startup response when parameterizing the CPU with the device
configuration. With the CPU module selected in the Properties tab of the Inspector
window, click on Startup and select:

5.1 Operating modes

119

b No startup (stay in STOP mode)
When the CPU is switched on, it remains in the STOP mode without executing
the startup program.

b Warm restart – RUN
After switching on, the CPU executes a warm restart. The values of the non-
retentive tags are deleted. The startup program is then executed once before
the CPU in the RUN mode cyclically executes the main program.

b Warm restart – mode prior to POWER OFF
After the system has been switched on, the CPU starts the mode in which it
was present prior to switching off (STOP or warm restart and RUN).

Warm restart

With a warm restart, the CPU sets itself and the modules to the configured basic
state. It deletes the non-retentive data in the system memory (inputs, outputs, bit
memories) and sets the non-retentive data tags to the start values from the load
memory. The data set as retentive (bit memories, data tags) is retained.

CPU activities in STARTUP mode

In the STARTUP mode, the CPU first deletes the input process image and disables
the peripheral outputs (Fig. 5.2). The signal states on the output modules are set
during this process according to their parameterization: retain last value or output
parameterized substitute value.

Startup organization blocks are called once if present. The input process image is
updated following execution of the startup program, and disabling of the peripher-
al outputs is canceled.

No Open User Communication is carried out during the startup. The high-speed
counters (HSC), the pulse generators, and the point-to-point connections of the
CM modules are not processed. The CPU updates the real-time clock.

If a restart is aborted by a power supply failure, for example, it is then re-executed
from the beginning when the CPU is switched on again.

Further information on user program processing in the STARTUP state can be
found in Chapter 5.5 “Start-up routine” on page 142.

5.1.3 RUN mode

The RUN mode is reached from the STARTUP mode. In the RUN mode, the PLC sta-
tion controls the machine or process.

The following activities are executed cyclically by the CPU (see also Fig. 5.2):

b Transmission of output process image to the output modules

b Updating of input process image

b Execution of main program

5 Edit user program

120

In addition, the interrupt and error programs are implemented with event-driven
execution.

The main program is present in organization block OB 1 and in further organiza-
tion blocks of the Program cycle event class. OB 1 is the only block in the user pro-
gram which must always be present. If further organization blocks are present for
the main program, they are executed following the OB 1 in order of their numbers.

In the RUN operating mode, the CPU has unlimited communication capability. All
functions provided by the operating system, e.g. time-of-day and runtime meter,
are in operation.

Further information on execution of the user program in RUN mode can be found
in Chapter 5.6 “Main program” on page 143 (including process images, cycle time,
response time, time-of-day), in Chapter 5.7 “Interrupt processing” on page 153
(time-delay interrupts, cyclic interrupts, and hardware interrupts), and in Chapter
5.8 “Troubleshooting, diagnostics” on page 167 (local error handling, OB 82 “Diag-
nostic interrupt”, OB 80 “Time error”).

Fig. 5.2 CPU activities in STARTUP and RUN modes

RUN

STARTUP

Switching on
STOPStop?

Operating system activities (e.g. commu-
nication with the programming device)

Reset input process image

Update input process image

Disable peripheral outputs Transfer output process image

Enable peripheral outputs

Update input process image

Initialize output process image
(retain last value or

output substitute value)

Execute startup program Execute main program
(including all interrupt and

error routines)

CPU activities in the STARTUP and RUN modes

5.1 Operating modes

121

5.1.4 Retentive behavior of operands

A memory area is retentive if its contents are retained even when the power supply
is switched off, as well as on a transition from STOP to RUN following power-up. The
retentive memory of a CPU 1200 comprises 10 KB. It can accommodate bit memo-
ries and data tags.

Retentivity settings for bit memories

You set the retentive memory area for the bit memories in the PLC tag table or in
the assignment list. Click on the Retain symbol in the toolbar of the working win-
dow, and enter the number of retentive bytes. The retentive area starts at memory
byte 0 and ends at byte no. (number – 1). If a bit memory declaration is present
within this range, it is assigned a tick or the retentivity symbol in the “Retain” col-
umn. A tag occupying more than one byte must not exceed the limit between the
retentive and non-retentive ranges.

Retentivity settings for global data tags

If the Optimized block access attribute is activated in the global or type data block,
individual tags can be defined as retentive. In the case of a tag with a structured
data type, only the complete tag can be set to retentive. If the attribute is not acti-
vated, the retentive setting applies to the entire data block.

Retentivity settings for tags in function blocks

If the Optimized block access attribute is activated in a function block, the retentiv-
ity of individual tags can be set in the interface area. Select the settings for each tag
from a drop-down list:

b Non-retentive
The tag in the instance data block is always non-retentive.

b Retentive
The tag in the instance data block is always retentive.

b Set in IDB
The retentivity setting for the tag can be made in the instance data bock.
The standard setting is “Non-retentive”.

For a tag with a structured data type, the retentivity setting applies for the whole
tag.

If the attribute Optimized block access is not activated, the setting can be made in
the instance data block, but only for the complete data block. The Optimized block
access property of the function block is “bequeathed” to the associated instance
data blocks.

5 Edit user program

122

5.2 Creating a user program

5.2.1 Program draft

You define the structure of the user program already during the draft phase by
adaptation to technological and functional conditions; this is important for pro-
gram creation, testing, and commissioning. In order to achieve effective program-
ming, it is therefore necessary to pay particular attention to the program structure.

Analysis of a complex automation task means division of it into smaller tasks or
functions based on the structure of the process to be controlled. You define the in-
dividual tasks by determining the function and then defining the interface signals
to the process or to other individual tasks. You can adopt this structuring of individ-
ual tasks in your program. This means that the structure of your program corre-
sponds to the structure of the automation task.

A structured user program is easier to configure and program section by section,
and means that more than one person can carry out the work in the case of very
large user programs. Last but not least, program testing, servicing, and mainte-
nance are simplified by this division.

With a linear program structure, the entire user program is present in one single
block – a good solution for small programs. The individual control functions are
program parts within this block, and are executed in succession. A block with LAD
or FBD program is divided into so-called networks, each of which accommodates
one or more current paths or complete logic operations. STEP 7 numbers all net-
works in succession. During editing and testing, you can directly reference each
network using its number.

The networks are executed in order of their numbering, but can also be bypassed
depending on conditions. The program can be debugged in sections using jump in-
structions temporarily inserted during commissioning.

A modular program structure is used if the task is very extensive, if you wish to
repeatedly use program functions, or if complex tasks exist. Structuring means
dividing the program into sections (blocks) with self-contained functions or a func-
tional correlation, and exchanging as few signals as possible with other blocks. If
you assign a specific (technological) function to each program section, manageable
blocks are achieved with simple interfaces to other blocks.

Fig. 5.3 shows a comparison between the principles of linear and modular program
structuring using a simple example. With the linear program structure, the individ-
ual control functions are written in succession into a block. In the modular pro-
gram structure, each control function is present in a block which is called by a
“higher” block. Further blocks can be called in turn in the called blocks.

Blocks can also be used repeatedly. Let us assume that the control of motors 1 to 3
has the same function, only the input and output signals and the control operations
are different. A Motor block can then be called three times with different signals
(parameters) and control the motors independent of one another.

5.2 Creating a user program

123

5.2.2 Program execution

The complete program of a CPU comprises the operating system and the user pro-
gram.

The operating system is the totality of all statements and declarations of internal
operating functions (e.g. saving of data in event of power failure, activation of pri-
ority classes etc.). The operating system is a fixed part of the CPU which you cannot
modify. However, you can reload the operating system from a memory card, e.g. for
a program update.

The user program is the totality of all statements and declarations programmed by
you for signal processing by means of which the plant (process) to be controlled is
influenced in accordance with the control task.

Fig. 5.3 Comparison between linear and modular program structures

Operating modes

Block call
command

Operating modes

Control motor 1

Control motor 1

Control motor 2

Control motor 3

Control valve 1
Control valve 1

Control valve 2Control valve 2

Display control Display control

Error evaluation Error evaluation

Data transfer Data transfer

Linear
program structure

Main program Main program

Valve control

Motor control

Modular program structure

Control motor 2

Control motor 3

Linear and modular program structures

http://pnap.ir/siemens-s71200-price-list/

5 Edit user program

124

Program execution modes

The user program consists of program sections which are executed by the CPU for
specific events. These events can be, for example, the starting up of the automation
system, an interrupt, or detection of a program error (Fig. 5.4). The programs
assigned to the events are divided into priority classes which define the sequence
of program execution if several events occur simultaneously and thus the interrupt
capability hierarchy.

The main program, which is executed cyclically by the CPU, has the lowest execu-
tion priority. All other events can interrupt the main program following each state-
ment; the CPU then executes the associated interrupt or error program and subse-
quently returns to execution of the main program.

A specific organization block (OB) is assigned to each event. The organization
blocks represent the event classes in the user program. If an event occurs, the CPU
calls the associated organization block. An organization block is part of the user
program which you can program yourself. There are organization blocks with
permanently assigned number and organization blocks with a freely assignable
number.

Fig. 5.4 Program execution modes of a SIMATIC user program

Cycle start

Switching on

<Interrupt> Interruption

Interruption<Error>

Operating system

STARTUP mode

RUN mode

Startup program

Interrupt program

Error program

Main program

Control program

Program execution modes of the control program

5.3 Programming blocks

125

Program execution commences in the CPU with the startup program. A startup
can be triggered by switching on the power supply or by an operator input on a con-
nected programming device. The startup program is optional. If you wish to create
a startup program, use organization block OB 100. You can assign further user or-
ganization blocks to the startup program. These are then executed in order of their
OB number following OB 100. Following execution of the startup program, the
CPU commences with execution of the main program.

The main program is present as standard in organization block OB 1 which is
always executed by the CPU. The start of the program is identical to that of the first
statement in OB 1. You can assign further organization blocks to the cyclically exe-
cuted main program. These user organization blocks are then executed in order of
their OB number following OB 1. The main program represents the totality of all
cyclically executed organization blocks.

Following execution of the main program, the CPU branches to the operating sys-
tem and, following execution of various operating system functions (e.g. update
process images), calls OB 1 again and the user organization blocks assigned to the
main program.

The events which can interrupt the main program are interrupts and errors.
Interrupts come from the controlled plant (hardware interrupts), from the CPU
(time-delay interrupts and cyclic interrupts), or from the modules (diagnostics in-
terrupts). The errors include time error events.

The organization block OB 80 is used for processing a time error event; for the diag-
nostic interrupt, there is the organization block OB 82. You can set the number of
the other interrupt organization blocks yourself.

5.2.3 Nesting depth

The main program and the startup program have a maximum nesting depth of 16;
an interrupt-controlled program has a nesting depth of 4. This means that begin-
ning with an organization block (nesting depth 1), you can call another 15 or 3
blocks arranged “horizontally” (nested). If more blocks are called, the CPU gener-
ates a program execution error. The nesting depth is not changed if several blocks
are called in succession (linear block calls).

5.3 Programming blocks

5.3.1 Block types

You can divide your program into individual sections as required. The STEP 7 pro-
gramming languages support this program breakdown by providing the required
statements. The individual program sections should be program parts that are self-
contained, each with a technological or functional correlation. These program parts

5 Edit user program

126

are called “blocks”. A block is a part of the user program that is defined by its func-
tion, structure or application.

User blocks

In the case of comprehensive and complex programs, it is recommend and some-
times necessary to “structure” (divide) the program in individual blocks. You can
select different types of block depending on the application:

b Organization blocks OB
The organization blocks represent the interface between operating system and
user program. The CPU's operating system calls the organization blocks when
specific events occur, e.g. in the event of hardware or cyclic interrupts. The main
program is in organization block OB 1 by default. There are organization blocks
with a fixed number and a specific assignment to events and organization blocks
with one freely selectable assignment to events and freely selectable number.
When calling, some organization blocks make so-called start information avail-
able that can be evaluated in the user program.

b Function blocks FB
A function block is part of the user program whose call can be programmed us-
ing block parameters. A function block has a tag memory which is located in a
data block. This data block is permanently assigned to the function block or, to
be more precise, to the function block call. It is possible to assign a different data
block (with the same data structure, but containing different values) to each
function block call. Such a permanently assigned data block is called an instance
data block, and the combination of function block call and instance data block is
referred to as a call instance, or “instance” for short. If a function block is called
as a single instance, a separate instance data block is assigned to the call. When
called as a local instance, the data is stored in the instance data block of the call-
ing function block.

b Functions FC
The blocks referred to as “functions” are used to program frequently recurring
automation functions. The calls can be parameterized. Functions do not store in-
formation, and have no assigned data block.

b Data blocks DB
Data blocks contain data of the user program. A data block can be generated as a
global data block, as an instance data block, or as a type data block. With a global
data block, you program the data tags directly in the data block. With an instance
data block, the programming of the assigned function block determines the data
tags present in the data block, and a type data block has the structure of a PLC
data type.

The number of organization blocks and the block number are partially defined by
the operating system. You can freely assign the numbers of the freely assignable
organization blocks and the other blocks within the permissible ranges (OB from
123 to 65 535, FC and FB from 0 to 65 535, DB from 1 to 65 535).

5.3 Programming blocks

127

For our small program structure example (Fig. 5.3 on page 123) we can now
roughly assign the block types to the individual control functions: the main pro-
gram is present in organization block OB 1, either completely with the linear pro-
gram structure or as block calls with the modular program structure. The individ-
ual control functions are either present in functions FC if they need not save their
own data, or in function blocks FB when saving their own data.

The motors could be controlled by a function block Motor which is called with dif-
ferent parameter assignments for the individual motors. The same applies to con-
trol of the valves.

Finally, a global data block which is not assigned to a function block can collect the
data produced during program execution. The block Data transmission then con-
tains the program which transfers the data to another controller.

System blocks

System blocks are components of the operating system. They can contain programs
(system functions SFC or system function blocks SFB) or data (system data blocks
SDB). System blocks make a number of important system functions accessible to
you, such as manipulating the internal CPU clock, or communications functions.
Some of the functions offered under the extended statements in the program ele-
ments catalog are system functions or system function blocks.

You can call system functions and system function blocks, but you cannot modify
them or program them yourself. The blocks themselves do not require space in the
user memory; only the block call and the instance data blocks of the system func-
tion blocks are in the user memory.

System data blocks contain information on such things as the configuration of the
automation system or the parameterization of the modules. These blocks are gen-
erated and managed by STEP 7 itself. You determine the contents of the system data
blocks, for example, when you configure a station. As a rule, system data blocks are
located in the load memory. You cannot access the contents of system data blocks.

The system blocks also include the technological function blocks (FBT). For exam-
ple, the technological object Axis is implemented as a technological function
block. The blocks themselves do not require space in the user memory; only the
block call and the instance data block of a technological function block are in the
user memory.

Standard blocks

In addition to the functions and function blocks you create yourself, off-the-shelf
blocks are also available from Siemens. These so-called standard blocks can be pro-
vided on a data medium or are delivered together with STEP 7, as extended state-
ments or in the global libraries, for example. You cannot view or edit the range of
standard blocks. Standard blocks behave like user blocks: they require space in the
user memory.

5 Edit user program

128

Standard blocks also share the number range with the user blocks. If a standard
block is added to the user program by means of an extended statement, for exam-
ple, the number of the standard block can no longer be occupied by a user block. If
a user block is already present with the number of the standard block which you add
to the user program, the number of the standard block is initially retained. The
standard block is then assigned a different, unused number during the next com-
pilation.

5.3.2 Editing block properties

To display and change the block properties, select the block in the project tree and
then the Properties command in the shortcut menu. Fig. 5.5 shows examples of the
block properties: the General section of a hardware interrupt organization block,
and the Information section of a function block.

The General section contains the Name of the block. The block name must be
unique within the program and must not already have been assigned to another
block, a PLC tag, a constant, or a PLC data type. The name can contain letters, dig-
its, and special characters (but not quotation marks). No distinction is made
between upper and lower case when checking the name. The Type is determined
when creating the block. The number is the block number within the block type.
The programming language is LAD, FBD, or SLC for blocks with programs, or DB for
data blocks.

Fig. 5.5 Block properties: OB tab “General” and FB tab “Information”

5.3 Programming blocks

129

With organization blocks, the Constant name constitutes the hardware ID. Use this
name if you wish to address the organization block in the program, e.g. for assign-
ment to an event. When creating the organization block you also define the Event
class to which the organization block belongs. The hardware IDs are listed in the
System constants tab of the default tag table.

With data blocks, the ID DB together with the type of data block is present in the
Type field: Global DB in the case of a global data block, Instance DB of <FB_name> in
the case of an instance data block of the function block <FB_name>, and Data block
derived from <Type_name> if the structure of the data block is based on a data type
<Type_name>.

The Information section contains the Title and the Comment; these are identical to
the block title and the block comment which you can enter when programming the
block prior to the first network. The Version is entered using two two-digit numbers
from 0 to 15: from 0.0 to 0.15, 1.0 to 15.15. Under Author you can enter the creator of
the block. Under Family you can assign a common feature to a group of blocks, as is
also the case with User-defined ID. The author, family, and user-defined ID can each
comprise up to 8 characters (without spaces).

The time data in the Time stamp section indicates when the block was created and
changed last, when the interface was changed last, and when the program code or
data was changed last.

The Compilation section provides information on the processing status of the
block, and – following the compilation – on the memory requirements of the block
in the load and work memories.

The Protection section indicates the block protection. A block can be protected so
that the program can no longer be read out (know-how protection). In the case of a
protected block, The block is protected is present here. More detailed information
can be found in Chapter 5.3.3 “Configuring know-how protection” on page 132.
Copy protection allows block processing to be linked to the serial number of the
memory card or the CPU. More detailed information can be found in Chapter 5.3.4
“Copy protection” on page 132.

Attributes

Each block type has a different combination of attributes. Table 5.1 lists the attri-
butes. Fig. 5.6 shows the attributes of a logic block and a data block. In the gen-
eral settings (Options > Settings > PLC programming in the main menu), you
define the default setting when creating new blocks for the Optimized block access
and IEC check attributes.

You define the Optimized block access attribute when creating the block. If the attri-
bute is activated, only symbolic addressing of the interface tags or the data tags in
the block is possible. With instance data blocks, the Optimized block access attribute
is “inherited” from the associated function block; in this case the data tags are
addressed by the associated function block.

5 Edit user program

130

The Optimized block access attribute results in “optimized” storage of the tags: the
tags are not stored in the declaration sequence but are “packed together”, i.e. bit
and byte tags are combined when possible in 16-bit packages. The Optimized block
access attribute also has effects on the retentivity setting of the data variables: with
the attribute activated, individual variables can be set as retentive (in the associ-
ated function block for instance data blocks), but only the complete block can be set
when the attribute is not activated.

The IEC check attribute indicates how strict the data type test is to be in the logic
block. With the attribute not activated, it is usually sufficient if the variables used
have the data width required for execution of the function or instruction; with the
attribute activated, the data types of the variables must correspond to the required
data types.

Table 5.1 Block attributes

Attribute In block Meaning with attribute activated

Optimized block access OB, 1)
FB, FC, DB

The block parameters and local data or data tags can only be
symbolically addressed; the retentivity can be set for individ-
ual tags; the data type LREAL can be used.

IEC check OB, FB, FC With comparison and arithmetic statements, the data types
of the tags must agree.

Handle errors within block OB, FB, FC One of the functions GetError or GetErrorID is programmed in
the block; the system response to an error in the block is sus-
pended.

Only store in load memory Global and
type DBs

The data block is not transferred to the work memory
(for future extensions).

Data block write-protected
in the device

Global and
type DBs

The values of the data tags cannot be overwritten by means
of a program.

1) The attribute is always activated for an organization block

Fig. 5.6 Block properties: attributes of code and data blocks

5.3 Programming blocks

131

The Handle errors within block attribute is activated as soon as one of the functions
GetError or GetErrorID is inserted in the program. The system reaction to a program-
ming or access error is then suppressed in favor of a self-programmed error routine.

Global and type data blocks can be assigned the Only store in load memory attribute.
Such types of data block are only present in the load memory on the memory card,
they are “not relevant to execution”. Since their data is not in the work memory,
direct access is not possible. There are system functions to access data in the load
memory. This attribute is switched off as standard and can be activated or deacti-
vated at any time using the program editor.

The Data block write-protected in the device attribute applies to global and type data
blocks. If you activate this, writing of the data tags is not possible. The write protec-
tion applies to all data relevant to execution (actual values) in the work memory.
Write protection must not be confused with block protection: A data block with
block protection (“know-how protection”) can be read and written by the program;
however, its data can no longer be viewed, for example using a programming
device.

Block properties for interrupt organization blocks

With a process interrupt organization block, the events which start the process in-
terrupt OB are present in a table in the Triggers section of the block properties. You
configure the start events and the assignment to a process interrupt OB using the
device configuration in the properties of the module triggering the interrupt
(Fig. 5.7).

In the case of an organization block with the start event Cyclic interrupt, the start
properties for the cyclic interrupt OB can be found in the block properties under
Cyclic interrupt. You enter the time base and the phase shift in milliseconds here.

Fig. 5.7 Block properties for interrupt organization blocks

5 Edit user program

132

5.3.3 Configuring know-how protection

With the know-how protection for a block you can prevent a program or its data
from being read out or modified. A protected block is identified in the project tree
by a padlock icon. It is still possible to read the following from a block provided with
know-how protection:

b Block properties

b The parameters of the block interface

b Program structure

b Global tags (listed in the cross-reference list without specification
of the position of use)

The following actions are still possible:

b Modify name and number in the block properties (necessary for copying
and pasting the block)

b Copy and paste block where the know-how protection is also copied

b Delete, compile, and download block

b Call block (FB or FC) in the program of another block

b Compare online and offline versions of the block (comparison only
of non-protected data).

To edit the know-how protection, select the block in the project tree under Program
blocks, and then select Edit > Know-how protection in the main menu. To configure
the know-how protection, click the Define button, enter a password, confirm the
password, and close the dialog with OK. To change the password, click the Change
button, enter the old and new passwords, confirm the new password, and close the
dialog with OK. To cancel the know-how protection, deactivate the Hide code (know-
how protection) checkbox, enter the password, and close the dialog with OK.

You can also apply the know-how protection to several blocks simultaneously if
these have the same password. If a function block is protected, the protection is
“inherited” by the instance data block when calling as a single instance.

Note: If the password is lost, no further access to the block is possible. You can only
cancel the know-how protection of a block in its offline version. If you download a
compiled block to the CPU, the recovery information is lost. A protected block which
you have uploaded from the CPU cannot be opened, not even with the correct pass-
word.

5.3.4 Copy protection

If a block has copy protection, processing of the block is dependent on a specific
CPU or memory card. So that the copy protection cannot be removed, the block
must then be provided with the know-how protection.

When the copy protection is being set up, the know-how protection for the block
must be switched off. To set up the copy protection, select the block in the project

5.3 Programming blocks

133

tree, select Properties from the shortcut menu and then Protection. In the Copy pro-
tection area, you can choose:

b No binding
No copy protection is set or a set copy protection is canceled.

b Bind to serial number of the memory card
The block can only be executed if the memory card has the specified serial
number.

b Bind to serial number of the CPU
The block can only be executed if the CPU has the specified serial number.

To enter the serial number, the options Serial number is inserted when downloading
to a device or a memory card and Enter serial number are available with an input field
for the serial number.

5.3.5 Block interface

Components of the block interface

The block interface contains the declarations of the local tags that are used solely
within the block. With the organization blocks (OB), these are – if present – the start
information and the temporary local data. With function blocks (FB) and functions
(FC), these are the block parameters which, when the block is called, provide the

Table 5.2 Declaration sections in the block interface

Section Data type Type, function Included in

Input E, Z, V, P,
S, H

STRING[]
STRING

Input parameters
may only be read in the program of the block

Data type STRING of any length
Data type STRING with the standard length of 254 characters

FC, FB and
some OBs

FB
FC

Output E, Z, P, (V)

STRING[]
STRING

Output parameters
may only be written in the program of the block
Data type STRING of any length
Data type STRING with the standard length of 254 characters

FC and FB

FB
FC

InOut E, Z, P, V, S

STRING

In/out parameters
may be read and written in the program of the block
Data type STRING with the standard length of 254 characters

FC and FB

FC and FB

Temp E, Z, P,
STRING

Temporary local data
is only valid during the current block processing

FC, FB and
OB

Static E, Z, P, S Static local data
is saved in the instance data block, and remains valid following block
processing

FB

Return E, DTL,
STRING, P,
(V), VOID

Function value
Output parameters with the return value of the function
(not relevant to LAD and FBD)

FC

E = elementary data type, Z = structured data type (except STRING), P = PLC data type
V = parameter type VARIANT, (V) parameter type VARIANT only in functions FC
S = system data type, H = hardware data type;
FC = function, FB = function block, OB = organization block

5 Edit user program

134

interface to the calling block, and the local data for saving intermediate results
(Table 5.2).

The block interface is shown as a table in the upper part of the working window.
An example for the block interface of a function block is shown by the Fig. 5.8.

You can assign a default value to the block parameters and static local data in the
interface of a function block; exceptions: A default setting is not possible for in/out
parameters with structured data type and for parameter type VARIANT. The default
values are in load memory and are transferred during the CPU startup to the work
memory where they overwrite the actual values.

Input parameters

An input parameter transfers a value to the program in the block and may only be
read in the called block. Input parameters are shown in the block call in the
sequence of their declaration, with LAD and FBD on the left side of the call box and
with SCL at the start of the parameter list.

An input parameter with data type STRING has an adjustable maximum length in a
function block, and a fixed maximum length of 254 characters in a function. Some
organization blocks have so-called startup information which is listed as input
parameters in the block interface.

Fig. 5.8 Example of block interface of a function block

5.3 Programming blocks

135

Output parameters

An output parameter transfers a value to the calling block and may only be written
in the called block. Output parameters are shown in the block call in the sequence
of their declaration, with LAD and FBD on the right side of the call box and with SCL
following the input parameters in the parameter list.

An output parameter with data type STRING has an adjustable maximum length in
a function block, and a fixed maximum length of 254 characters in a function.

Caution: Output parameters which cannot be assigned a default value must be writ-
ten in the block during each block processing. This applies, for example, to all out-
put parameters for a function (FC) and thus also to the function value. Note: Set and
reset statements do not execute an action if the result of the logic operation = “0”,
and therefore do not write to an output parameter!

In/out parameters

An in/out parameter transfers a value to the program in the block and can return it
to the calling block, usually with a changed content. An in/out parameter can be
read and written in the called block. In/out parameters are shown in the block call
in the sequence of their declaration, with LAD and FBD on the left side of the call
box under the input parameters and with SCL at the end of the parameter list.

An in/out parameter with data type STRING has a fixed maximum length of 254
characters.

Function value

The function value for functions is an output parameter which is handled in a spe-
cial manner. It has the name Ret_Val with the declaration RETURN and the data type
VOID (= no type) as standard. The function value is used with the text-based pro-
gramming language SCL (Structured Control Language). It is possible here to link
self-written functions in formulae (in expressions). The function value then corre-
sponds to the value used for calculation in the formula.

With LAD and FBD you can ignore the function value in the interface description. It
is not indicated at the call box if the data type VOID is set. You can also assign a dif-
ferent name and a different data type to the function value, and this is then dis-
played as the first output parameter. In the program of the called block, you then
treat the function value in the same way as an output parameter.

Temporary local data

Temporary local data is stored in the system memory of the CPU. This data is
addressed symbolically and is only available during block processing. It is not dis-
played on the call box or in the parameter list of the call statement. Further infor-
mation can be found in Chapter 4.1.5 “Operand area temporary local data” on
page 85.

5 Edit user program

136

Static local data

The static local data is stored in the instance data of the called function block. It can
be read and written in the program of the called block. Static local data is addressed
symbolically. It retains its value until written again. It is not displayed on the call
box or in the parameter list of the call statement.

The static local data is usually only processed in the function block itself. However,
since the static local data is saved in a data block, you can access it at any time like
tags in a global data block using “Data block name”.tag name.

The static local data is normally accessed symbolically. Absolute addressing is only
possible if the Optimized block access attribute is not activated in the function block
– and thus also in the derived instance data block – and if you address the data oper-
ands in the instance data block like the data operands of a global data block: using
%Data block number.Data operand address, e.g. %DB12.DBW0.

5.3.6 Programming block parameters

By means of block parameters you enable parameterization of the processing spec-
ification (the block function) present in a block.

Fig. 5.9 Example of programming with block parameters

Adder

Number_1

Number_2

Result

INT

Name : Adder
Adder : FC
Number : 12

Declaration

Number_1

Number_2

Result

Program (LAD, FBD)

Program (SCL)

Interface

Block properties

Program

Parameters

Block type,

name

Number_3

Name Data type

Number_3

Input INT

INT

INT

INT

Input

Input

Output

Sum INTTemp

#Number_1

#Number_2

ADD
INT

ADD
INT

#Sum

#Sum

#Number_3 #Result

Use of block parameters

#Result :=

Input
parameters

(data type INT)

Output
parameters

(data type INT)

#Number_1 + #Number_2 + #Number_3;

In the block program, the block parameters are called
formal parameters. They are used like tags which have
the same data type. The number sign (#) in front of the
name identifies the formal parameters and the other
tags of the block interface as (block-)local tags.

http://pnap.ir/siemens-s71200-price-list/

5.4 Calling blocks

137

The example shows an adder with three summands which can be used repeatedly
in the user program with different tags. The tags are transferred as block parame-
ters – in our example, three input parameters and one output parameter. Since the
adder need not permanently save values internally, a function FC is suitable as the
block type (Fig. 5.9).

The values to be transferred are declared as input parameters in the Input section
with name and data type, the calculated value as an output parameter in the Output
section, also with name and data type. If the program is written in LAD or FBD in the
block, another tag is required as intermediate memory. This is declared in the Temp
section, since its value is not required outside the block. A tag for intermediate stor-
age is not required with an SCL program.

The program in the block can be written in the language with which the block func-
tion is best mapped, independent of the programming language with which the
block is subsequently called. The block parameters used in the block program are
called formal parameters. They are handled like tags which have the same data type.
They are the placeholders for the current tags used later at runtime.

The “Adder” function can then be called repeatedly in the user program. Different
values are transferred to the adder at the block parameters with each call. These
values can be constants, operands, or tags; they are referred to as actual parame-
ters. During runtime, the control processor replaces the formal parameters by the
actual parameters. Section “Example of a block call” on page 138 shows how the
adder block programmed here is called and supplied with current tags.

A timer or counter function can also be transferred to the program in the block with
a block parameter. If the timer or counter function is transferred as an input param-
eter, the function status can be scanned. If the timer or counter function should be
controlled, it must be transferred as an in-out parameter.

5.4 Calling blocks

5.4.1 General information on calling logic blocks

If blocks are to be processed, they must be called in the program first. The organi-
zation blocks which are started by the operating system when certain events occur
are an exception.

With FBD and LAD, the call functions are boxes with an enable input EN and an
enable output ENO. A block call dependent on the result of logic operation can be
implemented using the enable input EN. The enable output ENO can be used to sig-
nal a malfunction determined in the block to the calling block. In SCL, the enable
input EN and the enable output ENO are implicitly available parameters that you
can add to the first or last position in the parameter list if needed.

The call box or call function shows all block parameters which were declared when
the block was created. If you subsequently change the block interface of the called
block, you must update the changes in the block call otherwise the program editor

5 Edit user program

138

will signal an “Interface conflict”. Finding and eliminating an interface conflict is
described in Chapter 6.6.5 “Consistency check” on page 206.

A prerequisite for calling a block is that it exists; at least its interface must be pro-
grammed. You call a block by selecting it under Program blocks in the project tree
and dragging it into the program of an opened block using the mouse.

If you drag a block directly from a library into an opened block, it is copied into the
Program blocks folder. If it is a system or standard block, it is saved in the Program
blocks > System blocks > Program resources folder.

The call functions are described in detail in Chapter 12.3 “Calling of code blocks”
on page 413.

Example of a block call

Chapter 5.3.6 “Programming block parameters” on page 136 shows how a block (an
FC function) is programmed with a block parameter. You can now call the “adder”
function in your program and transfer the values with which the block should work
to the block parameters. These values can be constants, operands or tags; they are
referred to as actual parameters (Fig. 5.10).

During runtime, the control processor replaces the formal parameters by the actual
parameters. When calling the “Adder” block in the example, the contents of the tags
“Value_1”, “Value_2”, and “Value_3” are added together and the result stored in the
“Sum” tag.

Fig. 5.10 Example of a block call with block parameters

“Measured value_2”

“Measured value_3” “Sum”

Block
parameters

Example of a block call

Adder

Number_1

Number_2

Number_3

Call in LAD or FBD

Call in SCL

"Adder" (Number_1 := "Measured value_1",
Number_2 := "Measured value_2",
Number_3 := "Measured value_3",
Result => "Sum");

During the block call, the block
parameters are supplied with tags
with which the program in the block
is to work. These tags are called
actual parameters.

During runtime, the actual para-
meters (the current tags) are used
instead of the formal parameters
(“placeholders”) used in the block.

The “Adder” block can now be called
multiple times in the user program
with different actual parameters.

Result

Actual
parameter

Block
parameters

Actual
parameters

“Measured value_1”

Actual
parameter

http://pnap.ir/siemens-s71200-price-list/

5.4 Calling blocks

139

Note: The tag #Sum, which was used in the “Adder” block, is a local tag and saved in
the temporary local data. The tag “Sum”, which supplies the block call, is a global
tag, for example a flag word. “Sum” as a global tag (PLC tag) only appears once in
the CPU. #Sum as a local tag can be used with different significance in each block.

The “Adder” block can now be called multiple times in the user program, each time
with a different parameter assignment. The created program is processed multiple
times with various tags.

5.4.2 Calling a function (FC)

When calling a function, all block parameters must be supplied with actual oper-
ands, i.e. you must connect operands or tags to all block inputs and outputs. For
LAD and FBD, connect the enable input EN and the enable output ENO as needed;
for SCL only the use of ENO is allowed for an FC function.

Supplying the block parameters

You can use tags from the inputs, outputs, bit memories, and data operand ranges
on all block parameters. Constants and peripheral inputs are only permissible for
input parameters, peripheral outputs only for output parameters.

The data type of the actual parameter must correspond to the data type of the block
parameter. The data types must agree exactly if the IEC check attribute is activated
in the calling block, otherwise matching widths of the tag or operand are usually
sufficient. The program editor uses implicit data type conversion if it is possible
without data loss.

Any maximum length of an actual parameter is possible for a block parameter with
data type STRING. Note that an actual parameter with data type STRING which has
been declared in the temporary local data cannot be assigned a default value and
therefore has any content. It must be provided with meaningful values before being
used as an actual parameter.

You supply a block parameter with the data type of a timer or counter function with
the instance data of a timer or counter function. This can be the instance data
block of the function call or the in-out parameter with the data type of the timer or
counter function.

Tags of all data types are allowed on a block parameter of VARIANT parameter type,
including operand areas addressed with a pointer (Chapter 4.2.3 “Absolute address-
ing of an operand area” on page 86). An entire data block can only be an actual
parameter if is derived from a PLC data type or a system data type (type data block).
The tags (operands or data types) which can be connected to the block parameters
or which are meaningful are defined by the program within the called block.

Using a function value of a function (FC)

The function value of a function has no effect when declared with data type VOID. If
the function value has another data type, it is handled in the block program like an

5 Edit user program

140

output parameter. The program editor then replaces the name of the function value
in the block program with the block name.

When calling the block, the function value is represented as the first output param-
eter in LAD and FBD – provided it does not have data type VOID. SCL handles a func-
tion with function value like a tag with the data type of the function value. Fig. 5.11
shows an example: The function “Adder2” adds three numbers and returns the total
as a function value with data type INT. The total can be directly processed further in
an expression.

5.4.3 Calling a function block (FB)

When calling a function block, you are requested to specify the storage location of
theinstance data. This is the data, with which the function block works internally:
the block parameters and the static local data.

Specify a data block if the call takes place in an organization block or a function. The
call then takes place as a “single instance”, and the data block is the instance data
block for this call. If you call the function block as a single instance for a second
time, enter a different data block as the instance data block. This then contains the
data for the second call. Assign a separate data block to each call of a function block
as single instance.

When calling a function block in another function block, you can choose the follow-
ing: You can call the function block as a “single instance” or as a “local instance”
(“multi-instance”). With a single instance, the call is assigned a separate data block
as instance data block. When calling a local instance, the called function block
stores its instance data in the instance data block of the calling function block. You

Fig. 5.11 Use of the function value with SCL

Example for use of the function value

Block interface

Block call in an expression

Number_2

Number_3

Result

Number_1

Name

Return

Input

Declaration

INT

INT

INT

INT

Data type

"Sum" := "Adder2" (Number_1 := "Measurement_1",
Number_2 := "Measurement_2",
Number_3 := "Measurement_3") + "Correction value";

In the “Adder2” function, the function value is declared in the block interface in the Return section,
in the example with the name Result and data type INT.

The block interface of the called block contains
the three input parameters and the function value as
result of the addition of the three input parameters.
The program in the “Adder2” block can be written in
any programming language. The function value
is handled like an output parameter."

The “Adder2” function can now be used in an expression in the programming language SCL.
The function is handled like a tag which has the data type of the function value.

5.4 Calling blocks

141

then specify the name with which the local instance can be addressed in the static
local data of the calling function block. You can repeatedly call a function block as
a local instance using different names in each case.

Supplying the block parameters

The block parameters of a function block are located in the instance data. Therefore
not all block parameters have to be supplied when calling the function block. If the
supply is omitted, the function block works with the “old” values from its last call
or with the default settings. An exception are block parameters with data type VARI-
ANT and in-out parameters with structured data type; these must be supplied so
that a valid pointer can be entered in the instance data. You can supply the EN
enable input and ENO enable output as required.

You can use tags from the inputs, outputs, and bit memories operand areas for all
block parameters. Constants and peripheral inputs are only permissible for input
parameters, peripheral outputs only for output parameters.

The data type of the actual parameter must correspond to the data type of the block
parameter. The data types must agree exactly if the IEC check attribute is activated
in the calling block, otherwise matching widths of the data type or operand are usu-
ally sufficient. The program editor uses implicit data type conversion if it is possible
without data loss.

An input or output parameter of a function block with data type STRING can only be
supplied with STRING tags whose maximum length corresponds to that of the block
parameter. Any maximum length of the STRING tag is possible on an in/out param-
eter. Note that an actual parameter with data type STRING which has been declared
in the temporary local data cannot be assigned a default value and therefore has
any content. It must be provided with meaningful values before being used as an
actual parameter.

You supply a block parameter with the data type of a timer or counter function with
the instance data of a timer or counter function. This can be the instance data
block of the function call, the name of the local instance, or an in-out parameter
with the data type of the timer or counter function.

Tags of all data types are allowed on a block parameter of VARIANT parameter type,
including operand areas addressed with a pointer (Chapter 4.2.3 “Absolute address-
ing of an operand area” on page 86). An entire data block can only be a current
parameter if is derived from a PLC data type or a system data type (type data block).
The tags (operands or data types) which can be connected to the block parameters
or which are meaningful are defined by the program within the called block.

“External” access to local data

The block parameters of a function block are located in a data block. If a block
parameter is saved as a value (not as a pointer), you can address it from any posi-
tion in the user program like a global data tag. The address for a single instance is

5 Edit user program

142

“Data block”.Parameter name and for a local instance “Data block”.Instance name.
Parameter name.

Block parameters with VARIANT data type as well as in-out parameters with struc-
tured data types are saved as pointers (as a reference).

5.4.4 “Passing on” of block parameters

The “passing on” of block parameters is a special form of access and supply of block
parameters. The parameters of the calling block are “passed on” to the parameters
of the called block. In this case, the formal parameter of the calling block is then the
actual parameter of the called block.

It always applies here that the actual and formal parameters must be of the same
type, i.e. the associated block parameters must agree with regard to their data
types. Note in this context that the maximum length may have to be considered with
data type STRING.

It additionally applies that you can only connect an input parameter of the calling
block to an input parameter of the called block, and an output parameter only to an
output parameter. You can connect an in/out parameter of the calling block to all
declaration types of the called block.

The “passing on” of block parameters also applies in the same manner to state-
ments (program functions) which are represented with inputs and outputs similar
to a block call. If these statements are supplied with block parameters, input (block)
parameters can only be connected to function inputs, output (block) parameters
only to function outputs. In/out parameters can be connected to function inputs and
function outputs.

5.5 Start-up routine

A CPU 1200 carries out a warm restart when started up. The activities carried out
during the warm restart are described in Chapter 5.1.2 “STARTUP mode” on
page 118.

Organization blocks for the startup program

When starting up a CPU 1200 – in the transition from STOP to RUN, for example
when switching on the power supply – a startup program is processed once. The
startup program is present in organization block OB 100 and the blocks called
within it. The OB 100 is of hardware data type OB_STARTUP and event class Startup.
You can create additional organization blocks with this event class, which are then
given a freely choosable number of 123 or higher. The further startup organization
blocks are called and executed following the OB 100 in the order of their numbers.

A startup program is not essential. If no startup program is required, simply omit
the organization blocks with the Startup event class.

5.6 Main program

143

The startup program can have any length. There is no time limit for executing the
startup program; the cycle time monitoring is not active. A startup organization
block has the start information shown in Table 5.3.

The process image input is reset during execution of the startup program,
i.e. scanning of an input delivers the signal state “0”. However, you can scan the sig-
nal states or analog values directly on the module terminals by means of the oper-
and area “Peripheral inputs”.

No interrupt events – except errors – are processed during execution of the startup
program. Interrupts occurring during the startup are executed after the startup but
before the main program.

5.6 Main program

The main program is the cyclically processed user program; this is the “normal”
way in which programs are executed in PLCs. The large majority of control systems
only use this form of program execution. If event-driven program execution is
used, it is usually only an addition to the main program.

5.6.1 Organization blocks for the main program

The main program is present in organization block OB 1 and the blocks called with-
in it. The OB 1 is of hardware data type OB_PCYCLE and event class Program cycle.
You can create additional organization blocks with this event class, which are then
given a freely choosable number of 123 or higher. The further main program orga-
nization blocks are called and executed following the OB 1 in the order of their
numbers.

Organization blocks for cyclic program execution have no start information.

The main program runs in the lowest priority class and can be interrupted by alarm
and error events. The corresponding organization blocks are then called and pro-
cessed. After processing an interrupt, the main program continues from the point
of interruption.

5.6.2 Process image update

The process image is part of the CPU's internal system memory (see Section 4.1
“Operands and tags” on page 79). The process image consists of the process image
input (operand area “Inputs I”) and the process image output (operand area “Out-
puts Q”). It has a size of 1024 bytes (addresses 0 to 1023) per area. All digital and

Table 5.3 Start information for a startup organization block

Name Declaration Data type Description

LostRetentive Input BOOL = “1” if retentive data areas have been lost

LostRTC Input BOOL = “1” if the time of the real-time clock has been lost

5 Edit user program

144

analog input/output channels, independent of the module, are in the address range
of the process image.

Following a CPU restart and prior to initial execution of the main program, the op-
erating system transfers the signal states of the output process image to the output
modules, and accepts the signal states of the input modules into the input process
image.

This is followed by execution of the main program where the signal states of the
inputs are combined with each other and the outputs are controlled. Following ter-
mination of the main program, a new cycle begins with updating of the process
image (Fig. 5.12).

Exceptions from process image updating

You can exclude individual modules from the automatic updating of the process
image. This is carried out when configuring the modules. The signal states of these
modules must then be addressed by the program using direct access (I/O area: P).

Switching off the process image updating can be applied to an interrupt program.
If an input module is addressed directly in the interrupt program, the signal state
currently present at the terminals is read (and not the signal state at the point in
time of process image updating). It is sometimes necessary in the interrupt pro-
gram to react promptly, e.g. to reset an output quasi immediately. The direct access
can be used to directly influence the signal states on the output modules.

5.6.3 Cycle time

Cycle monitoring time

Processing of the main program with regard to timing is carried out by means of
the so-called Cycle monitoring time. The default value for the monitoring time is
150 ms. You can set this value within the range from 1 ms to 6000 ms by parame-
terizing the CPU accordingly.

Fig. 5.12 Process image update

PII PIQ PIIPIQ

Start of the current
cyclic processing

Start of the next
cyclic processing

Actual cycle time of the main program

PIQ = process image of outputs
PII = process image of inputs

Main programMain program

Process image updating for the main program

5.6 Main program

145

If processing of the main program takes longer than the set cycle monitoring time,
the CPU calls the organization block OB 80 Time error. If this does not exist,

b A CPU 1200 with firmware version V1.0 ignores the error message. If the cycle
monitoring is triggered for a second time during a program cycle, the CPU goes
to STOP – even if an OB 80 is present.

b A CPU 1200 with firmware version V2.0 or higher switches to STOP mode.

The cycle processing time comprises:

b The total processing time of the main program (processing times of all orga-
nization blocks with the event class Program cycle),

b The processing times for higher priority classes which interrupt
the main program (in the current cycle)

b The time required to update the process images, and

b The time for communication processes by the operating system, e.g. access
operations of programming devices to the CPU (the program status in partic-
ular takes a long time!).

The current cycle processing time can be observed online on the current CPU
(Chapter 13.3.5 “Online tools” on page 439).

RE_TRIGR Restart cycle monitoring time

RE_TRIGR restarts the cycle monitoring time. This then starts with the value set
during CPU parameterization, and ENO has the signal state “1”. RE_TRIGR does not
have any parameters (Fig. 5.13).

The RE_TRIGR function is only effective when called in the main program. The cycle
monitoring time is not restarted by a call in the startup program or in an interrupt
program, and ENO has the signal state “0”.

Fig. 5.13 Restart cycle monitoring time

Function:

Restart cycle monitoring time

DeclarationName

EN
ENO

–
–

BOOL
BOOL

Enabling input
Enabling output

DescriptionData type
RE_TRIGR RE_TRIGR

EN ENENO ENO

LAD

SCL

FBD

RE_TRIGR();
The call restarts the cycle monitoring time with
the configured duration.

5 Edit user program

146

Communication load

The CPU's operating system requires a certain time for communication with the
programming device or with other stations. In the CPU properties, you can set the
percentage of the cycle time which is to be available for communication tasks. If you
set a high percentage, it may be necessary to adapt the cycle monitoring time and
the minimum cycle time. 20% is set by default.

If k represents the communications load in percent, the processing time of the main
program changes by a factor of 100 (100 – k). This does not account for any inter-
ruptions due to alarm or error events.

Independent of this setting, the CPU carries out communication tasks every 100
ms. This should guarantee that the CPU can still be accessed and switched to STOP
in the event of an endless loop with restarting of the cycle monitoring time.

Minimum cycle time

In the CPU properties you can set a minimum cycle time in addition to the maxi-
mum cycle (monitoring) time. The highest value of the minimum cycle time cannot
be greater than the maximum cycle (monitoring) time.

If the minimum cycle time is set, the CPU waits at the end of processing of the main
program until the minimum cycle time has expired, and only then commences with
a new program cycle. If processing of the main program takes longer than the set
minimum cycle time, this has no further effects.

Application of a minimum cycle time reduces large variations in the processing
time, and thus large variations in the response time. The CPU can execute commu-
nication tasks while waiting for the minimum cycle time to expire.

5.6.4 Reaction time

If the user program in the main program works with the signal states of the process
images, this results in a response time which is dependent on the program execu-
tion time (the cycle time). The response time lies between one and two cycle times,
as demonstrated in the following example.

If a limit switch is activated, for example, it changes its signal state from “0” to “1”.
The PLC detects this change during subsequent updating of the process image, and
sets the input allocated to the limit switch to “1”. The program evaluates this
change by resetting an output, for example, in order to switch off the correspond-
ing drive. The new signal state of the output that was reset is transferred at the end
of program execution; only then is the corresponding bit reset on the digital output
module.

In a best-case situation, the process image is updated immediately following the
change in the limit switch's signal (Fig. 5.14). It then only takes one cycle for the
corresponding output to respond. In a worst-case situation, updating of the pro-
cess image has just been completed when the limit switch's signal changes. It is
then necessary to wait approximately one cycle for the PLC to detect this change

5.6 Main program

147

and to set the input in the process image. The response then takes place after one
further cycle.

The response time to a change in the input signal can thus be between one and two
cycles. Added to the response time are the delays at the input modules, the switch-
ing times of contactors, and so on.

In certain cases you can reduce the response times by addressing the I/O directly or
by calling program sections depending on events, for example through a hardware
interrupt.

Uniform response times or equal time intervals in the process control can be
achieved if a program section is always executed at regular intervals, e.g. a watch-
dog interrupt program.

5.6.5 Stop program execution

STP terminates program execution; the CPU then switches to the STOP operating
mode. The STP function does not have any parameters (Fig. 5.15).

Fig. 5.14 Response times of PLCs

Fig. 5.15 Stop program execution

PII

PII = process image of inputs
PIQ = process image of outputs

PII PIIPIQPIQ PIQ

Change in sensor signal
with immediate transfer
to process image

Change in sensor signal
without transfer to
process image

Transfer to
process image

Change in
output signal

Response time = one cycle time

Response times when using process images

Response time = two cycle times

Change in
output signal

Main program Main program

Function:

Stop program execution

DeclarationName

EN

ENO

–

–

BOOL

BOOL

Enabling input

Enabling output

DescriptionData type

STP STP

EN ENENO ENO

LAD FBD

SCL

STP();
The call stops processing of the user program.

5 Edit user program

148

The CPU terminates processing of the user program and updating of the process
image output. In the module properties, you can set the signal states of the digital
and analog outputs which the CPU is to output in the STOP mode: Keep last value or
Use substitute value. As standard, the signal state “0” is output at the digital outputs
and a value of zero at the analog outputs at STOP.

In the STOP operating mode, the CPU continues communication with the program-
ming device and the diagnostics activities.

5.6.6 Time

Each CPU 1200 has a real-time clock which you can set and scan using a program-
ming device or system functions. The clock is buffered by a high-performance
capacitor. If the CPU was connected to the power supply for at least 24 hours, the
capacitor is charged sufficiently to provide a power reserve for the clock for approx.
10 days. The buffered runtime of the real-time clock can be extended up to one year
with the Battery Board BB 1297.

The time is represented in the user program in DTL format, thus comprising the
date, time, day of week, and daylight saving/standard time ID.

System time, local time, daylight saving/standard time

The time set in the CPU's real-time clock is the system time (module time). This is
decisive for all timing processes controlled by the CPU, e.g. entry of time stamp in
the diagnostics buffer and in the block properties. WR_SYS_T sets the system time,
RD_SYS_T reads the system time. You can also set the system time online using the
programming device.

The local time (displayed time) is set by addition of a correction factor which can
also be negative. Adjustment is carried out when parameterizing the CPU with the
device configuration editor or during runtime with SET_TIMEZONE. The local time
can be used to visualize time zones. It is read with RD_LOC_T.

Configuring the local time

The time zone and the switching over between daylight saving and standard time is
set in the properties of the CPU: select the CPU in the device configuration, and
open the Time-of-day section in the Properties tab in the inspector window. Set the
time zone (local time), check the Activate daylight saving time box, specify the time
difference between daylight saving and standard time, and also the conversion
dates (Fig. 5.16).

WR_SYS_T Set system time

WR_SYS_T (Write System Time) sets the CPU's clock to the value specified by the IN
parameter (Fig. 5.17). This value does not include the local time and the daylight
saving/standard time ID. The error information is output in the RET_VAL parameter
(0 = no error). In the event of an error, ENO is set to signal state “0”.

5.6 Main program

149

Fig. 5.16 Parameterization of local time and daylight saving/standard time switchover

Fig. 5.17 Set and read system time

WR_SYS_T
DTL

RD_SYS_T
DTL

WR_SYS_T
DTL

RD_SYS_T
DTL

EN

EN

EN

EN

RET_VAL

RET_VAL

OUT

RET_VAL

RET_VAL

ENO

ENO

ENO

OUT

ENO

LAD

LAD

FBD

FBD

IN IN

Declaration

Declaration

Name

Name

EN

EN

ENO

ENO

IN

RET_VAL

RET_VAL

OUT

–

–

–

–

INPUT

RETURN

RETURN

OUTPUT

BOOL

BOOL

BOOL

BOOL

DTL

INT

INT

DTL

Enabling input

Enabling input

Enabling output

Enabling output

Date and time

Error information

Error information

Date and time

Description

Description

Data type

Data type

SCL

SCL

#var_... := WR_SYS_T(#var_...);

#var_... := RD_SYS_T(#var_...);

Read system time

Set system time

Set and read system time

Function: Calling with EN = “1” sets the system time
to the value present in parameter IN.

Function: Calling with EN = “1” outputs the system
time in parameter OUT.

http://pnap.ir/siemens-s71200-price-list/

5 Edit user program

150

RD_SYS_T Read system time

RD_SYS_T (Read System Time) reads the CPU's actual system time and outputs it in
the OUT parameter (Fig. 5.17). This value does not include the local time and the
daylight saving/standard time ID. The error information is output in the RET_VAL
parameter (0 = no error). In the event of an error, ENO is set to signal state “0”.

SET_TIMEZONE Set time zone

SET_TIMEZONE sets the time zone and the switch-over between daylight saving and
standard time (Fig. 5.18). The result is the local time calculated from the system
time.

Table 4.13 on page 115 shows the data structure of the used system data type
TimeTransformationRule.

Fig. 5.18 Set and read local time

RD_LOC_T
DTL

SET_TIMEZONE SET_TIMEZONE

RD_LOC_T
DTL

EN

EN EN

REQ REQ

TimeZone TimeZone

EN

RET_VAL

DONE

DONE

OUT

BUSY

BUSY

ERROR

ERROR

STATUS

STATUS

RET_VALENO

ENO

ENO

OUT

ENO

LAD

LAD

FBD

FBD

Set and read local time

Declaration

Declaration

Name

Name

EN

EN

ENO

ENO

RET_VAL

REQ

OUT

TimeZone

DONE

BUSY

ERROR

STATUS

–

–

–

–

RETURN

INPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

INT

BOOL

DTL

*)

BOOL

BOOL

BOOL

WORD

Enabling input

Enabling input

Enabling output

Enabling output

Error information

Job initiation

Date and time

Local time rule

Job finished

Being processed

Error occurred

Error information

Description

Description

Data type

Data type

Function:

Function:

SCL

SCL

#var_... := RD_SYS_T(#var_...);

SET_TIMEZONE(
REQ := ... ,
TIMEZONE := ... ,
DONE => ... ,
BUSY => ... ,
ERROR => ... ,
STATUS => ...);

Set a time zone

SET_TIMEZONE sets the local time
on the CPU based on a correction
factor for the system time and
the daylight saving/standard time
switchover.

*) The TimeTransformationRule data
type contains the rules for setting the
local time and is explained in the text.

RD_LOC_T outputs the local time at
the OUT parameter.

Read local time

http://pnap.ir/siemens-s71200-price-list/

5.6 Main program

151

RD_LOC_T Read local time

RD_LOC_T (Read Local Time) reads the CPU's current local time and outputs it in the
OUT parameter (Fig. 5.18). The local time is calculated from the system time, the
local time zone, and the daylight saving/standard time ID. The local time zone and
the daylight saving/standard time ID are set in the properties of the CPU in the
device configuration editor. The error information is output in the RET_VAL param-
eter (0 = no error). In the event of an error, ENO is set to signal state “0”.

Calculating with date and time

You can link the date and time together using further system functions, for exam-
ple to generate the difference between two times of day or to add a duration to a
specific point in time. The system functions available are described in the Chapter
11.4 “Arithmetic functions for time values” on page 369.

Setting the time on the CPU module online

You can read and set the system time (module time) on the CPU online using the
programming device. To do this, open the project and start the Online & diagnostics
editor under the PLC station in the project tree. To establish the online mode, click
in the toolbar of the Project view on the Go online symbol or on the Go online button
in the Online access section of the diagnostics window.

Select the Set time of day command in the Functions section of the diagnostics win-
dow. The current time of the programming device is then displayed. For the module
time (system time on the CPU), you can either select the programming device time,
or you can set a separate system time on the CPU module.

Time synchronization

The CPU module time can be synchronized over Ethernet. A time server is required
which synchronizes the time of further stations in the network using the NTP pro-
cedure.

Activate the time synchronization in the properties of the PROFINET interface using
the hardware configuration. To do this, select the PROFINET interface in the device
configuration, and select the Time synchronization command in the properties in
the Inspector window. Check the Enable time-of-day synchronization using NTP
mode box, enter the IP addresses of the servers involved, and select the updating in-
terval.

5.6.7 Runtime meter

An runtime meter counts the hours while running. You can use the runtime meter,
for example, to record the CPU runtime or to determine the operating hours of con-
nected devices.

A CPU 1200 has 10 runtime meters with a value range of 32 bits (231–1 hours). An
runtime meter also stops when the CPU is at STOP; if the CPU restarts, the runtime

5 Edit user program

152

meter must be restarted if required. The count value of an runtime meter is even
retained on restart and after a general reset.

The RTM function controls an runtime meter. If the maximum duration has been
reached, the runtime meter remains stationary and signals an overflow with the
value W#16#8082 at the parameter RET_VAL. An runtime meter can only be set to
a new value or zero using the RTM function.

RTM Control runtime meter

RTM controls an runtime meter. Fig. 5.19 shows the graphic representation of the
system function.

RTM controls the runtime meter whose number is specified in the NR parameter.
The MODE parameter defines the function to be executed. The value to which the
runtime meter is to be set (default value or start value in hours) is present in the PV
parameter. The parameter CQ signals with signal state “1” that the runtime meter
is running. The current value in hours is present in the CV parameter. CQ and CV
are updated by the job ID MODE = B#16#00.

RTM can write the values of all runtime meters of the CPU to the memory card so
that they are retained even if the backup voltage fails or a module is swapped. You
should avoid frequent writing to the memory card, as there is a physical limit to the
number of write operations.

Fig. 5.19 System block for controlling the runtime meter

RTM

RTM

Control runtime meter

NR

NR

EN

EN

MODE

MODE

PV

PV

RET_VAL

RET_VAL

ENO

ENO

CV

CV

CQ

CQ

B#16#00 Read actual values CQ and CV
B#16#01 Start with the last value
B#16#02 Stop
B#16#04 Set to default value PV
B#16#05 Set to default value PV and start
B#16#06 Set to default value PV and start
B#16#07

RTM: Task ID MODE

LAD

FBD

DeclarationName

EN

ENO

NR

PV

CQ

MODE

RET_VAL

CV

–

–

INPUT

INPUT

OUTPUT

INPUT

RETURN

OUTPUT

BOOL

BOOL

UINT

DINT

BOOL

BYTE

INT

DINT

Enabling input

Enabling output

Predefined value

Status

Mode

Error information

Actual value

DescriptionData type

SCL
#var_... := RTM(

NR := #var_... ,
MODE := ... ,
PV := ... ,
CQ => ... ,
CV => ...);

#var_
#var_
#var_
#var_

Runtime meter

Save the values of all runtime meters on
the memory card

http://pnap.ir/siemens-s71200-price-list/

5.7 Interrupt processing

153

5.7 Interrupt processing

5.7.1 Introduction to interrupt processing

Interrupt processing is event-driven program execution. When such an event oc-
curs, the operating system interrupts execution of the main program and calls the
routine allocated to this particular event. Once this routine has been processed, the
operating system resumes execution of the main program at the point of interrup-
tion. Such an interruption can take place after every operation (statement).

Applicable events may be interrupts and errors. A priority scheduler controls the
execution order if interrupt events occur virtually simultaneously.

Each routine associated with an interrupt event is written in an organization block
in which further blocks can be called. An event of higher priority interrupts execu-
tion of the routine in an organization block with a lower priority. You can influence
the interruption of a program by events of higher priority using system functions
(Chapter 5.7.6 “Delay and enable interrupts” on page 166).

Events

The responses of the operating system are based on events. If an organization block
is assigned to the event, the block is called when the event occurs. If calling is not
possible at this moment, the event is placed in the queue that corresponds to its pri-
ority.

If no organization block is assigned to an event, the preset system response is car-
ried out when the event occurs. Table 5.4 lists those events which cannot be
assigned to an organization block.

Table 5.4 Events without calling of organization block

Event class Priority Event System
response

Remove/insert 21 Hot swapping of a module in the central con-
troller
Hot swapping of a module in the distributed I/O

STOP

Ignore

Access error 22 I/O access error during updating of process
image

Ignore

Programming error 23 Programming error in a block without local
error handling

Ignore

I/O access error 24 I/O access error in a block without local error
handling

Ignore

Maximum cycle time
exceeded twice

27 Maximum cycle (monitoring) time exceeded
twice in a process cycle

STOP

5 Edit user program

154

Processing priorities

Table 5.5 shows the priority classes available for a CPU 1200 and the associated
events which result in calling of an organization block.

The startup program belongs to the same priority class as the main program:
the CPU's operating system prevents them from being called simultaneously. Inter-
rupt events occurring during the startup phase are saved in a queue and processed
prior to the main program following the transition to the RUN mode.

If several events of the same type occur so rapidly in succession that processing
cannot keep up, they are saved in a queue and processed one after the other. Each
type of event has its own queue. If the queue is full, the organization block OB 80
Time error is called when the next event occurs.

The assignment of an event to a priority class, the priority of the event, and the size
of the queues are fixed variables.

A program can interrupt another program if the associated event belongs to a high-
er priority class. Programs in the same priority class – even if they have different
priorities – cannot mutually interrupt.

Programs with the same priority are processed in the sequence in which the asso-
ciated events have occurred. If an interrupt program cannot be processed because

Table 5.5 Organization blocks of a CPU 1200

Priority class
Priority

Queue (size)
Event class OB number Quantity

1 1 1 Cycle
(program cycle)

OB 1,
>= OB 123

One start event for the main pro-
gram, several OBs permissible

1 1 Startup
(startup)

OB 100,
>= OB 123

One start event for the startup pro-
gram, several OBs permissible

2 3 8 Time-delay interrupt
(time-delay interrupt)

OB 20 to OB 23,
>= OB 123

Total of 4 events:
max. 4 start points for delays, 1 OB
per event;
max. 4 adjustable time intervals,
1 OB per event

4 8 Cyclic interrupt
(cyclic interrupt)

OB 30 to OB 38,
>= OB 123

5 32 Hardware interrupt
(hardware interrupt)

OB 40 to OB 47,
>= OB 123

16 incoming interrupts,
16 outgoing interrupts,
1 OB per interrupt

6 16 High-speed counter HSC
(hardware interrupt)

OB 40 to OB 47,
>= OB 123

6 events CV=PV,
6 changes in direction,
6 external resets,
1 OB per interrupt

9 8 Diagnostics interrupt
(diagnostic error interrupt)

OB 82 1 diagnostics event

3 26 8 Time error
(time error interrupt)

OB 80 1 OB start error,
1 cycle time violation,
1 queue violation

5.7 Interrupt processing

155

a program of higher priority is currently being processed, the event is entered into
the queue. The associated program is then processed when the program of higher
priority has been completed, and if no other event of higher priority is present.

The main program has the lowest processing priority. Only one interrupt organiza-
tion block can be processed at a time, which can then be interrupted by the organi-
zation block OB 80 Time error.

Types of interrupt

The CPU 1200 provides the following interrupt events (interrupts):

b Time-delay interrupt
An interrupt generated when a certain period of time has passed; a system
function defines the time at which this period begins

b Cyclic interrupt
An interrupt generated by the operating system at periodic intervals

b Hardware interrupt
An interrupt from a module, either via an input derived from a process signal
or generated on the module itself (e.g. by a high-speed counter HSC).

Other interrupt events are the time error (Section 5.8.3 “Time error OB 80” on
page 168) and the diagnostics interrupt (Section 5.8.6 “Diagnostics interrupt OB 82”
on page 176).

Current signal states

In an interrupt routine it is sometimes necessary to work with the current signal
states of the I/O modules and not with the signal states of the inputs that were up-
dated at the start of the main program. The fetched signal states are then written
directly to the I/O without waiting until the output process image has been updated
at the end of the main program.

The operand area I/O permits direct access to the signal states on the module termi-
nals (Section 4.1 “Operands and tags” on page 79). Note that the signal states on the
module terminals change asynchronous to the cyclic program execution. It is there-
fore recommendable to maintain a strict separation between the main program
and the interrupt routine.

5.7.2 Time-delay interrupts

A time-delay interrupt implements a delay time independent of the timer functions
and asynchronous to cyclic program execution. With a CPU 1200, the organization
blocks OB 20 to OB 23 and OB 123 and higher are set aside for processing a time-
delay interrupt.

Such an organization block is assigned to event class Time-delay interrupt. It is of
hardware data type OB_Delay. The System constants tab of the default tag table lists
the names and values of the constants. The name of the constant can be changed in
the block properties.

5 Edit user program

156

Using a time-delay interrupt

A time-delay interrupt is started by calling the system function SRT_DINT; this
system function also passes on the delay interval and the delay organization
block. When the delay interval has expired, the corresponding organization block
is called.

The time between calling SRT_DINT and starting the organization block is a maxi-
mum of one millisecond less than the configured delay time providing that no
interrupt events delay the call.

You can also use the CAN_DINT function to cancel execution of a time-delay inter-
rupt that has not yet started. The associated organization block is then no longer
called.

Calling of a time-delay interrupt OB can be delayed or enabled using the DIS_AIRT
and EN_AIRT functions.

You must not use more than a total of four time-delay interrupt and cyclic interrupt
organization blocks in your program.

Time-delay interrupt organization blocks do not have any startup information.

Behavior during startup

During a startup, the operating system deletes all settings you have programmed
for time-delay interrupts.

You can start a time-delay interrupt in the startup program by calling SRT_DINT.
Following expiry of the delay time, the CPU must be in the RUN operating mode in
order to process the corresponding organization block. If this is not the case, the
CPU waits with the OB call until the startup has been completed and then calls the
time-delay interrupt OB before the first statement in the main program.

Configuring time-delay interrupts

Configuration of the time-delay interrupts is carried out in two steps:

b First create a user organization block for a time-delay interrupt.

b Then program the SRT_DINT function and possibly the CAN_DINT and
QRY_DINT functions and assign the number of the time-delay interrupt OB
to the OB_NR parameter.

To create an organization block for a time-delay interrupt, open the project in the
Project view. In the project tree, double-click on Add new block under Program
blocks. Click on Organization block (OB) in the Add new block window, and then on
the start event Time delay interrupt. Assign a meaningful name to the OB, define the
programming language, and select Manual if the OB is to have a number different

5.7 Interrupt processing

157

from the automatically assigned one. You can call further blocks (FB and FC) up to
a nesting depth of four in the time-delay interrupt OB.

Insert the SRT_DINT function in your program – this can be found in the program
elements catalog under Extended statements and Interrupts. Then click on the selec-
tion symbol in the input box of the OB_NR parameter and select the time-delay
interrupt OB from the list. You program the CAN_DINT and QRY_DINT functions in
the same manner.

Fig. 5.20 Start, cancel, and query a time-delay interrupt

Declaration

Declaration

Declaration

Name

Name

Name

EN

EN

EN

ENO

ENO

ENO

OB_NR

OB_NR

OB_NR

DTIME

SIGN

RET_VAL

RET_VAL

RET_VAL

STATUS

–

–

–

–

–

–

INPUT

INPUT

INPUT

INPUT

INPUT

RETURN

RETURN

RETURN

OUTPUT

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

OB_DELAY

OB_DELAY

OB_DELAY

TIME

WORD

INT

INT

INT

WORD

Enabling input

Enabling input

Enabling input

Enabling output

Enabling output

Enabling output

Delay OB

Delay OB

Delay OB

Delay time

--- (not relevant)

Error information

Error information

Error information

Status

Description

Description

Description

Data type

Data type

Data type

Control time-delay interrupt

SRT_DINT

CAN_DINT

SRT_DINT

CAN_DINT

EN

EN

EN

EN

ENO

ENO

ENO

ENO

LAD

LAD

FBD

FBD

RET_VAL

RET_VAL

RET_VAL

RET_VAL

OB_NR

OB_NR

OB_NR

OB_NR

DTIME

DTIME

SIGN

SIGN

QRY_DINT

QRY_DINT

Start time-delay interrupt

Cancel time-delay interrupt

Query time-delay interrupt

EN

EN

OB_NR

OB_NR

ENO

RET_VAL

RET_VAL

STATUS

STATUS

ENO

LAD

FBD

SCL

SCL

SCL

#var_... := SRT_DINT(OB_NR := #var_... ,
DTIME := #var_... ,
SIGN := #var_...);

#var_... := CAN_DINT(#var_...);

#var_... := QRY_DINT(OB_NR := #var_... ,
STATUS => #var_...);

http://pnap.ir/siemens-s71200-price-list/

5 Edit user program

158

System functions for editing a time-delay interrupt

You can control a time-delay interrupt using the following functions:

b SRT_DINT Start time-delay interrupt

b CAN_DINT Cancel time-delay interrupt

b QRY_DINT Querying the status of a time-delay interrupt

Calling of these functions is shown in Fig. 5.20. You can also connect a constant or
a tag of data type WORD or INT to the OB_NR parameter if the IEC check attribute is
not activated.

SRT_DINT Start time-delay interrupt

SRT_DINT starts a time-delay interrupt. The function call is simultaneously the start
time for the parameterized period. Once the delay time has expired, the CPU calls
the parameterized OB. You can set the delay time in intervals of 1 ms. The accuracy
of the delay time is also 1 ms.

The SIGN parameter has no significance with a CPU 1200, but it must nevertheless
be supplied. You can assign it a constant value of zero (0), for example.

Note that processing of a time-delay interrupt OB may be delayed if organization
blocks of higher priority are being processed when the OB is called. The call is also
delayed by use of the DIS_AINT function.

You can overwrite a current delay time by a new value by calling SRT_DINT again.
The new delay time then commences when the function is called.

CAN_DINT Cancel time-delay interrupt

CAN_DINT cancels a started time-delay interrupt. The organization block selected
by the OB_NR parameter is not called in this case.

QRY_DINT Querying the status of a time-delay interrupt

QRY_DINT queries the status of a time-delay interrupt. The time-delay interrupt is
specified with the parameter OB_NR. The STATUS parameter contains the desired
information and the individual bits have the significance shown in Table 5.6.

Error response

If the time-delay interrupt OB is not present in the user program when called, the
operating system signals a program execution error which can be processed using
the GET_ERR_ID and GET_ERROR functions.

If the delay time has expired and the associated OB is still being processed, the oper-
ating system calls OB 80 Time error. The error is ignored if OB 80 is not present.

5.7 Interrupt processing

159

5.7.3 Cyclic interrupts

A cyclic interrupt is an interrupt triggered at periodic intervals and initiates execu-
tion of a cyclic interrupt organization block. A cyclic interrupt allows you to period-
ically execute a particular routine independent of the processing time of the cyclic
program. With a CPU 1200, the organization blocks OB 30 to OB 38 and OB 123 and
higher are set aside for processing the cyclic interrupts.

A cyclic interrupt organization block is assigned to event class Cyclic interrupt. It is
of hardware data type OB_Cyclic. The System constants tab of the default tag table
lists the names and values of the constants. The name of the constant can be
changed in the block properties.

Using cyclic interrupts

The properties of a cyclic interrupt include the time interval and the phase offset.
The values can be set between 1 ms and 60 000 ms in increments of 1 ms. The
time base and the phase offset are entered in the block properties of the cyclic in-
terrupt OB.

You can use a total of four time-delay interrupt and cyclic interrupt organization
blocks in your program.

Calling of a cyclic interrupt OB can be delayed or enabled using the DIS_AIRT and
EN_AIRT functions.

Cyclic interrupt organization blocks do not have any startup information.

Behavior during startup

Processing of cyclic interrupts is not possible in the startup program. The time in-
tervals only commence upon transition to the RUN mode.

Phase offset

The phase offset is used to process cyclic interrupt programs in a precise time frame
even if they have the same time interval or a common multiple thereof. This results
in higher accuracy of the processing intervals.

Table 5.6 STATUS parameter of system function QRY_DINT

Bit Meaning with signal state “0” Meaning with signal state “1”

0 The CPU is in the RUN mode. The CPU is in the STARTUP mode.

1 The interrupt is enabled. The interrupt has been delayed by DIS_AIRT.

2 The interrupt expired or is not active. The interrupt is active.

3 Always “0”

4 An OB with the number OB_NR does not exist. An OB with the number OB_NR is loaded.

Other Always “0”

5 Edit user program

160

The start time of the time interval and the phase offset is the transition from the
STARTUP state to RUN. The call instant for a cyclic interrupt OB is thus the time
interval plus the phase offset. An example is shown in Fig. 5.21: No phase offset is
set in the upper part, therefore the start of processing of the organization block
with the higher number is shifted in each case by the respective processing time of
the organization block with the lower number.

If, on the other hand, a phase offset is configured which is greater than the maxi-
mum processing time of the organization block with the lower number, the organi-
zation block with the higher number is exactly processed in the time base.

Configuring cyclic interrupts

You configure a cyclic interrupt by creating a cyclic interrupt OB: First open your
project in the Project view. In the project tree, double-click on Add new block under

Fig. 5.21 Effect of phase offset with cyclic interrupts

t

t tt t

t

t

t

t

t

t

t

tt t t

Phase offset

RUN

RUN

Without phase offset

With phase offset

Effect of phase offset with cyclic interrupts

Starting of the organization block with the higher number is offset by the processing time of
the organization block with the lower number.

If the phase offset is sufficiently large, the organization block with the higher number
starts exactly in the time interval.

Processing of OB with
the lower number

Processing of OB with
the higher number

Processing of OB with
the lower number

Processing of OB with
the higher number

http://pnap.ir/siemens-s71200-price-list/

5.7 Interrupt processing

161

Program blocks. Click on Organization block (OB) in the Add new block window, and
then on Cyclic interrupt.

Assign a meaningful name to the OB, define the programming language, and select
Manual if the OB is to have a number different from the automatically assigned one.

You can call further blocks (FB and FC) up to a nesting depth of four in the cyclic
interrupt OB.

The time base and the phase offset are entered in the block properties. With the
cyclic interrupt OB open, click Cyclic interrupt in the Inspector window under
Properties and enter the time base and phase offset in milliseconds.

System functions for editing a cyclic interrupt

You can set and query the parameters for processing a cyclic interrupt with the fol-
lowing functions:

b SET_CINT Set cyclic interrupt parameters

b QRY_CINT Query cyclic interrupt parameters

Calling of these functions is shown in Fig. 5.22. You can also connect a constant or
a tag of data type WORD or INT to the OB_NR parameter if the IEC check attribute is
not activated.

SET_CINT Set cyclic interrupt parameters

SET_CINT sets the parameters for a cyclic interrupt. These are the interval with
which the cyclic interrupt is triggered, and the phase offset. Enter the time interval
in microseconds at the CYCLE parameter. If the time interval is zero, the cyclic inter-
rupt organization block specified in parameter OB_NR is not called. The phase off-
set at parameter PHASE is also specified in microseconds.

QRY_CINT Query cyclic interrupt parameters

QRY_CINT reads the parameters of the cyclic interrupt organization block specified
at parameter OB_NR and outputs them to the parameters CYCLE (time interval) and
PHASE (phase offset). The operating mode of the selected cyclic interrupt organiza-
tion block is output at parameter STATUS (Table 5.7).

Error response

If the cyclic interrupt OB is not present in the user program when called, the oper-
ating system signals a program execution error which can be processed using the
GET_ERR_ID and GET_ERROR functions.

The processing time of a cyclic interrupt organization block must be significantly
shorter than its time frame. If the associated cyclic interrupt is repeated during an
ongoing cyclic interrupt OB, the operating system calls OB 80 Time error. The error
is ignored if OB 80 is not present.

5 Edit user program

162

Fig. 5.22 Set and query cyclic interrupt parameters

Table 5.7 STATUS parameter of system function QRY_CINT

Bit Meaning with signal state “0” Meaning with signal state “1”

0 The CPU is in the RUN mode. The CPU is in the STARTUP mode.

1 The interrupt is enabled. The interrupt has been delayed by DIS_AIRT.

2 The interrupt expired or is not active. The interrupt is active.

3 Always “0”

4 An OB with the number OB_NR does not exist. An OB with the number OB_NR is loaded.

Other Always “0”

Declaration

Declaration

Name

Name

EN

EN

ENO

ENO

OB_NR

OB_NR

CYCLE

PHASE

RET_VAL

RET_VAL

CYCLE

PHASE

STATUS

–

–

–

–

INPUT

INPUT

INPUT

INPUT

RETURN

RETURN

OUTPUT

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

OB_CYCLE

OB_CYCLE

UDINT

UDINT

INT

INT

UDINT

UDINT

WORD

Enabling input

Enabling input

Enabling output

Enabling output

Cyclic-interrupt OB

Delay OB

Time interval (µs)

Phase offset

Error information

Error information

Time interval (µs)

Phase offset

Status

Description

Description

Data type

Data type

Set and query parameters for processing a cyclic interrupt

SET_CINT

SET_CINT

EN

EN

ENO

ENO

LAD

FBD

RET_VAL

RET_VAL

OB_NR

OB_NR

CYCLE

CYCLE

PHASE

PHASE

QRY_DINT

QRY_DINT

EN

EN

OB_NR

OB_NR

ENO

RET_VAL

RET_VAL

CYCLE

PHASE

STATUS

CYCLE

PHASE

STATUS

ENO

LAD

FBD

SCL

SCL

#var_... := SET_CINT(OB_NR := #var_... ,
CYCLE := #var_... ,
PHASE := #var_...);

#var_... := QRY_CINT(OB_NR := #var_... ,
CYCLE => #var_... ,
PHASE => #var_... ,
STATUS => #var_...);

Set parameters

Query parameters

http://pnap.ir/siemens-s71200-price-list/

5.7 Interrupt processing

163

5.7.4 Process interrupts

A hardware interrupt summarizes events in the controlled process or a module and
responds immediately with a corresponding program. With a CPU 1200, the orga-
nization blocks OB 40 to OB 47 and OB 123 and higher are set aside for processing
a cyclic interrupt.

A hardware interrupt organization block is assigned to event class Hardware
interrupt. It is of hardware data type OB_HWINT. The System constants tab of the de-
fault tag table lists the names and values of the constants. The name of the constant
can be changed in the block properties.

You can use up to 50 independent process interrupt OBs. Only one hardware inter-
rupt OB can be assigned to a hardware interrupt event, but several events can be as-
signed to one hardware interrupt OB.

Triggering a hardware interrupt

Possible sources of hardware interrupt events are:

b All onboard digital input channels of the CPU module

b Plus the digital input channels on the signal board and

b The signals of a high-speed counter HSC (CV = PV, change in counting
direction, and external reset)

Triggering of a hardware interrupt is initially disabled by default. You can enable
the processing of a process interrupt when parameterizing using the device config-
uration editor. With the digital input channels you can select whether the hardware
interrupt is to be triggered by an incoming event, an outgoing event, or by both.

If, during processing of a hardware interrupt OB, an event occurs on the same chan-
nel of the same module which would again trigger the freshly processed hardware
interrupt, this process interrupt is lost. A new hardware interrupt is only detected
when processing of the old hardware interrupt has been completed. If the event to
which the same process interrupt OB is assigned occurs on a different channel of
the same module or on a different module, the operating system starts the organi-
zation block again following processing of the process interrupt OB.

Using the hardware interrupt

Hardware interrupt OBs are only called in the RUN mode.

Hardware interrupt organization blocks do not have any startup information.

At runtime, the assignment between a hardware interrupt event and an organiza-
tion block can be made or removed.

Calling of a hardware interrupt OB can be delayed or enabled using the DIS_AIRT
and EN_AIRT functions.

5 Edit user program

164

Behavior during startup

The modules do not generate hardware interrupt events in STARTUP mode. Inter-
rupt handling commences with the transition to the RUN operating mode. Hard-
ware interrupts present during the transition are lost.

Activate hardware interrupt event

If an onboard input of the CPU module is to trigger a hardware interrupt, start the
device configuration editor, select the CPU module, and change in the Inspector
window to the Properties tab. In the Digital inputs section, select the associated chan-
nel and activate the hardware interrupt.

If a digital input on the signal board is to trigger a hardware interrupt, select the
signal board, and change in the Inspector window to the Properties tab. Under
Digital inputs in the DIx/DOx section, select the associated channel and activate the
process interrupt.

If a high-speed counter is to trigger a hardware interrupt, select the CPU module,
and change in the Inspector window to the Properties tab. Select the associated
counter in the High-speed counters (HSC) section, activate it under General, and set
the counter function. Under Event configuration, you can activate the hardware in-
terrupt.

When activating the hardware interrupt, you can assign a name to the event and
create the associated process interrupt OB: Open the Hardware interrupt input box
and select the hardware interrupt OB in the window (if it has already been created),
or create a new one using Add object.

Hardware interrupt organization block

Open a project in the Project view. In the project tree, double-click on Add new block
under Program blocks. Select Organization block (OB) and the associated event class
Hardware interrupt. Assign a meaningful name to the organization block, and
change the programming language and the number of the block if necessary.

Error response

If the hardware interrupt OB is not present in the user program when called, the
operating system signals a program execution error which can be processed using
the GET_ERR_ID and GET_ERROR functions.

5.7.5 Assigning interrupts during runtime

With the following functions you can assign an organization block to an interrupt
event during runtime and cancel the assignment again:

b ATTACH Assign organization block to the interrupt event

b DETACH Remove organization block from the interrupt event

5.7 Interrupt processing

165

Calling of these functions is shown in Fig. 5.23. You can also connect a constant or
a tag of data type WORD or INT to the OB_NR parameter if the IEC check attribute is
not activated. You can also connect a constant or a tag with a 32-bit wide data type
to the EVENT parameter if the IEC check attribute is not activated.

ATTACH Assign organization block to the interrupt event

ATTACH assigns an interrupt organization block to an interrupt event. The event
must be activated and defined using the device configuration editor. The interrupt
organization block with the event class suitable to the event must be present in the
user program.

Once the assignment has been made, the organization block is called and processed
when the event occurs. The ADD parameter defines whether the previous assign-
ments to other events are to be retained (with “1” or TRUE) or canceled (with “0” or
FALSE).

The enabling output ENO has the signal state “0” with the errors: OB not present
(RET_VAL = 8090), OB is of wrong type (RET_VAL = 8091), or event does not exist
(RET_VAL = 8093).

Fig. 5.23 Attaching an organization block to and detaching it from the interrupt event

Declaration

Declaration

Name

Name

EN

EN

ENO

ENO

OB_NR

OB_NR

EVENT

ADD

RET_VAL

EVENT

RET_VAL

–

–

–

–

INPUT

INPUT

INPUT

INPUT

RETURN

INPUT

RETURN

BOOL

BOOL

BOOL

BOOL

OB_ATT

OB_ATT

EVENT_ATT

BOOL

INT

EVENT_ATT

INT

Enabling input

Enabling input

Enabling output

Enabling output

Hardware interr. OB

Hardware interr. OB

Interrupt event

Add at “1”

Error information

Interrupt event

Error information

Description

Description

Data type

Data type

Attaching an organization block to and detaching it from the interrupt event

ATTACH

DETACH

ATTACH

DETACH

EN

EN

EN

EN

ENO

ENO

ENO

RET_VAL

ENO

LAD

LAD

FBD

FBD

RET_VAL

RET_VAL

RET_VAL

OB_NR

OB_NR

EVENT

OB_NR

OB_NR

EVENT

EVENT

EVENT

ADD

ADD

SCL

SCL

#var_... := ATTACH(OB_NR := #var_... ,
EVENT := #var_... ,
ADD := #var_...);

#var_... := DETACH(OB_NR := #var_... ,
EVENT := #var_...);

Attaching an organization block to the interrupt event

Detaching an organization block from the interrupt event

http://pnap.ir/siemens-s71200-price-list/

5 Edit user program

166

DETACH Remove organization block from the interrupt event

DETACH removes the assignment of an interrupt event to an interrupt organization
block.

If an event is specified in the EVENT parameter, the assignment of this event is can-
celed. If the EVENT parameter is “0”, all assignments to the OB present on parame-
ter OB_NR are canceled.

If the requested assignment does not exist, the enabling output ENO has the signal
state “0” and a value of 1 is output in the RET_VAL parameter. Further errors are:
OB not present (RET_VAL = 8090), OB is of wrong type (RET_VAL = 8091), or event
does not exist (RET_VAL = 8093).

5.7.6 Delay and enable interrupts

The following program functions are available for delaying and enabling inter-
rupts:

b DIS_AIRT Delay interrupt events

b EN_AIRT Enable delayed interrupt events

Calling of these functions is shown in Fig. 5.24.

DIS_AIRT Delay interrupt events

Following calling of the DIS_AIRT function, the program in the current organiza-
tion block (in the current priority class) is not interrupted by an interrupt event of
higher priority should this occur. The interrupts are processed with a delay, i.e. the

Fig. 5.24 Delay and enable interrupt events

Delay and enable interrupt events

Declaration

Declaration

Name

Name

EN

EN

ENO

ENO

RET_VAL

RET_VAL

–

–

–

–

RETURN

RETURN

BOOL

BOOL

BOOL

BOOL

INT

INT

Enabling input

Enabling input

Enabling output

Enabling output

Number of calls

Number of calls

Description

Description

Data type

Data type

DIS_AIRT

EN_AIRT

DIS_AIRT

EN_AIRT

EN

EN

EN

EN

ENO

ENO

RET_VAL

RET_VAL

RET_VAL

RET_VAL

ENO

ENO

LAD

LAD

FBD

FBD

SCL

SCL

#var_... := DIS_AIRT();

#var_... := EN_AIRT();

Delay interrupt events

Enable interrupt events

http://pnap.ir/siemens-s71200-price-list/

5.8 Troubleshooting, diagnostics

167

operating system saves the interrupt events occurring during the delay and only
processes them when the delay has been canceled. No interrupts are lost.

The delay in processing is retained until the end of processing of the current orga-
nization block or until the EN_AIRT function is called.

You can call several DIS_AIRT functions in succession. The RET_VAL parameter indi-
cates the (new) number of calls. You must then call EN_AIRT exactly as often as
DIS_AIRT so that the processing of all interrupts is enabled again.

EN_AIRT Enable delayed interrupt events

The EN_AIRT function enables processing of the interrupts again which have been
delayed with DIS_AIRT. You must call EN_AIRT exactly as often as you previously
called DIS_AIRT in the current organization block or in the blocks called within this
organization block.

The RET_VAL parameter indicates the (still remaining) number of effective delays.
If RET_VAL is equal to 0, processing of all interrupts has been enabled again.

5.8 Troubleshooting, diagnostics

5.8.1 Causes of errors and responses

The CPU can detect and signal errors in the program execution.
These errors include:

b Errors in arithmetic operations (overflow, invalid floating-point number)

b Errors when calling blocks (block does not exist or is still being processed,
program execution error)

b Errors when addressing the peripheral inputs and outputs (access errors)

In the event of “serious” errors, e.g. cycle monitoring time expired twice in a pro-
gram cycle, the CPU directly enters the STOP mode.

Errors which are module-based are signaled by the diagnostics function. This can
be carried out via the ERROR LED on the front of the CPU, via an entry in the diag-
nostics buffer, or by starting the diagnostics interrupt (see Chapter 13.3 “Hardware
diagnostics” on page 436).

Error handling in general

The occurrence of an error can be signaled by the following responses:

b The ENO output of a program function is set to “0” if the function has been
executed incorrectly or not at all.

b The operating system starts the standard error handling, e.g. with a “fatal”
error it enters the STOP mode or calls organization block OB 80 Time error.

b The operating system relinquishes the standard error handling and applies
the (block) local error handling instead.

5 Edit user program

168

5.8.2 Error display with the ENO output

System functions for which an error can occur during processing and callable logic
blocks (functions, function blocks) have an enable output ENO, with which the error
in the calling program can be reported. An error is present if the ENO output has sig-
nal state “0” or is FALSE.

For LAD and FBD, the ENO output is represented as an output parameter at the call
box. For SCL, the ENO output is not represented by default. If you want to use it, add
scanning of the ENO output to the last position in the parameter list. You can scan
the ENO output in the calling block and respond to the error (Chapter 12.4 “EN/ENO
mechanism” on page 417).

In a self-written block, transfer an error message to the ENO output with a block
end function (Chapter 12.2 “Block end function” on page 412). Examples of
detected errors in the user program are diagnostics alarms, e.g. wire break at an
analog input, or malfunction of the controlled machine, e.g. the simultaneous
assignment of two conflicting limit switches.

5.8.3 Time error OB 80

The operating system calls the organization block OB 80 Time error when one of
the following events occurs:

b Cycle monitoring time exceeded

b OB request error: the requested organization block is still being processed
(possible with time-delay and cyclic interrupts) or an organization block is
requested too frequently within a given priority class (queue overflow)

b An interrupt is lost due to interrupt overload.

The time error organization block is assigned to event class Time error interrupt. It
is of hardware data type OB_TIMEERROR. The System constants tab of the default tag
table lists the name and value of the constant. The name of the constant can be
changed in the block properties.

Only one time error organization block can be programmed.

The error is ignored if OB 80 is not present when a time error occurs.

Start information

Table 5.8 shows the start information for OB 80. The tags in the start information
are transferred to the Input section of the block interface and are present in the tem-
porary local data.

5.8 Troubleshooting, diagnostics

169

5.8.4 Local error handling

You can program local error handling in organization blocks (OB), function
blocks (FB) and functions (FC). This only applies to the corresponding block. The
local error handling is neither accepted by the calling block nor passed on to the
called block. If the local error handling is not programmed, the system settings
apply when an error occurs (ignore error or STOP).

The default responses are as follows with the local error handling active:

b With a write error: the error is ignored, and program execution is continued.

b With a read error: the substitute value “0” or zero is read, and program execution
is continued.

b With an execution error: execution of the faulty statement (function) is aborted,
and program execution is continued with the next statement.

Local error handling is automatically activated by inserting the GET_ERROR or
GET_ERROR_ID statement in the block, and indicated in the block properties by the
Handle errors within block attribute (cannot be edited).

Evaluating program errors

Two functions are available for the evaluation of errors in the case of local error
handling in the block (Fig. 5.25):

b GET_ERR_ID (read program error number) provides the error number (identifi-
cation) when a program execution error occurs.

b GET_ERROR (read program error information) provides the corresponding in-
formation in a predefined data structure when a program execution error oc-
curs.

In the event of a program execution error, the CPU enters the error into the diag-
nostics buffer as standard, and goes to STOP. If the GET_ERROR or GET_ERR_ID
function is programmed in the block, there is neither an entry into the diagnostics
buffer nor a change to STOP. Instead of this, the error is signaled by means of
GET_ERROR or GET_ERR_ID.

The error may have occurred at any position between starting of the block and
calling of GET_ERROR or GET_ERR_ID. Therefore, in the case of a single call of

Table 5.8 Start information for OB 80

Variable Data type Description

fault_id BYTE Error ID
B#01: Maximum cycle time exceeded
B#02: Called OB is still executing
B#07: Queue overflow
B#09: Interrupt loss due to high interrupt load

csg_OBnr OB_ANY Number of OB being processed at time of error

csg_prio UINT Priority of OB being processed at time of error

5 Edit user program

170

GET_ERROR or GET_ERR_ID, the call is preferably positioned in the last network of
the monitored block.

GET_ERROR and GET_ERR_ID can also be called more than once. Calling of GET_
ERROR or GET_ERR_ID reinitiates error recording. The next call of GET_ERROR or
GET_ERR_ID outputs the first error following the previous call of GET_ERROR or
GET_ERR_ID. The sequence of the errors is not saved.

GET_ERR_ID Read program error number

In the event of a program execution error, the GER_ERR_ID function provides the
error identification in the ID parameter (Table 5.9). The function is executed if EN
has the signal state “1”. No error has been detected if ENO has the signal state “0”
(FALSE), an error ID is present if the signal state at ENO is “1” (TRUE).

GET_ERROR Read program error information

In the event of a program execution error, the GER_ERROR function provides the
error information in the ERROR parameter in data type ErrorStruct. The data type
ErrorStruct has the structure shown in Section 4.8.5 “Data type ErrorStruct” on
page 112. The function is executed if EN has the signal state “1”. No error has been
detected if ENO has the signal state “0” (FALSE), error information is present if the
signal state at ENO is “1” (TRUE).

Error priority

The first detected error is output when calling GET_ERROR or GET_ERR_ID. If sev-
eral errors occur simultaneously when processing a statement (function) they are

Fig. 5.25 Functions for local error handling

Local error handling

Declaration

Declaration

Name

Name

EN

EN

ENO

ENO

ID

ERROR

–

–

–

–

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

WORD

ErrorStruct

Enabling input

Enabling input

Enabling output

Enabling output

Error number

Error information

Description

Description

Data type

Data type

GetErrorID

GetError

GetErrorID

GetError

EN

EN

EN

EN

ENO

ENO

ID

ERROR

ID

ERROR

ENO

ENO

LAD

LAD

FBD

FBD

Read program error number

Read program error information

SCL

SCL

#var_... := GET_ERR_ID();

#var_... := GET_ERROR();

http://pnap.ir/siemens-s71200-price-list/

5.8 Troubleshooting, diagnostics

171

output according to their priority (Table 5.10). Priority 1 is the highest priority,
12 is the lowest.

Evaluating program error information

The data type ErrorStruct can be inserted into data blocks or into a block interface
from a drop-down list. You can also insert the data type more than once if you
assign a different name to the data structure each time. The data structure and the
name of individual structure components cannot be changed.

Table 5.9 Error numbers with program execution errors

ERROR_ID Fault ERROR_ID Fault

hex dec hex dec

16#2503 9475 Invalid pointer 16#253C 9532 Incorrect version, or function (FC)
does not exist

16#2522 9506 Range violation when
reading

16#253D 9533 System function (SFC) does not
exist

16#2523 9507 Range violation when
writing

16#253E 9534 Incorrect version, or function
block (FB) does not exist

16#2524 9508 Invalid operand when
reading

16#253F 9535 System function block (SFB)
does not exist

16#2525 9509 Invalid operand when
writing

16#2575 9589 Program nesting depth exceeded

16#2528 9512 Incorrect bit orientation
when reading

16#2576 9590 Error in assignment of temporary
local data

16#2529 9513 Incorrect bit orientation
when writing

16#2942 10562 Read error during direct access
(input channel does not exist)

16#2530 9520 Data block write error
(DB read-only)

16#2943 10563 Write error during direct access
(output channel does not exist)

16#253A 9530 Global DB does not exist

Table 5.10 Priorities during error output

Priority Type of error Priority Type of error

1 Error in program code 7 Time or counter function does not
exist

2 Reference missing 8 No write access to a DB

3 Invalid range 9 I/O error

4 DB does not exist 10 Statement does not exist

5 Operand is not compatible 11 Block does not exist

6 Width of specified range is insufficient 12 Invalid nesting depth

5 Edit user program

172

If the error information is saved in a data block, it can also be read by other blocks.
For example, another block can be called in the event of an error which then takes
over evaluation of the error information.

5.8.5 Diagnostic functions in the user program

The following functions are available to evaluate diagnostics alarms in the user
program:

b LED Read status of an LED

b DeviceStates Read status of distributed I/O devices

b ModuleStates Read status of a central I/O modules

b GET_DIAG Read diagnostic information

LED Read status of an LED

LED reads the status of a module LED. The parameter LADDR specifies the module
and the parameter LED specifies the LED. RET_VAL indicates the current status of
the specified LED. Fig. 5.26 shows the function call.

Fig. 5.26 Read status of an LED

DeclarationName

EN

ENO

LADDR

LED

RET_VAL

–

–

INPUT

INPUT

RETURN

BOOL

BOOL

HW_IO

UINT

INT

Enabling input

Enabling output

Module ID

LED number

LED status

DescriptionData typeLED

Parameter LED Parameter RET_VAL

LED

EN

LADDR

LED

EN

LADDR

LED

ENO

RET_VAL

RET_VAL

ENO

LAD

FBD

Read status of an LED

SCL
#var_... := LED(LADDR := #var_... ,

LED := #var_...);

Value LED

STOP/RUN
2 ERROR
1

3 MAINT
4 redundant
5 Link (green)
6 Rx/Tx (yellow)

Value LED status

0 LED does not exist
1 Permanently switched off

3
Color 1 flashes at 2 Hz

5
6 Colors 1 and 2 flash alternately at 2 Hz
7 LED is active, color 1
8 LED is active, color 2
9 LED exists, but no status information is available

If the RET_VAL parameter displays the value 16#80xx, there is
a parameterization error.

Color 2 flashes at 2 Hz

Color 1 permanently switched on (e.g. green for STOP/RUN LED)

4

2
Color 2 permanently switched on (e.g. orange for STOP/RUN LED)

http://pnap.ir/siemens-s71200-price-list/

5.8 Troubleshooting, diagnostics

173

The module ID can be found in the System constants tab in the default tag table or
the module properties in the Properties tab in the inspector window under General
in the Name field. At the LADDR parameter, enter this name or select it from the
drop-down list. You can also specify the numerical value of the module ID, which is
provided as a constant or variable in the System constants tab.

DeviceStates Read status of distributed I/O devices

DeviceStates reads the status of the I/O stations in a PROFINET IO system. At the
LADDR parameter, you can enter the system ID of the PROFINET IO system. With the
MODE parameter, you can select the type of status information that is displayed at
the STATE parameter for all I/O stations. Fig. 5.27 shows the function call.

The system ID can be found either in the System constants tab in the default tag table
or in the PROFINET IO system properties in the Properties tab in the inspector win-
dow under General in the Name field. At the LADDR parameter, enter this name or
select it from the drop-down list. You can also specify the numerical value of the
system ID, which is provided as a constant or variable in the System constants tab.

Via the MODE parameter you select the type of status information to be output at
the STATE parameter (Fig. 5.27). With a bit set to signal state “1”, the bit field at the
STATE parameter shows that the selected status information applies to the affected
station. Example: If you want to determine which stations are disrupted, assign the
value 2 to the MODE parameter. Bit 0 at the STATE parameter has signal state “1” if

Fig. 5.27 Read status of distributed stations

DeclarationName

EN

ENO

LADDR

MODE

STATE

RET_VAL

–

–

INPUT

INPUT

INOUT

RETURN

BOOL

BOOL

HW_IOSYSTEM

UINT

VARIANT

INT

Enabling input

Enabling output

System ID

Type of information

Status information

Error information

DescriptionData typeDeviceStates

DeviceStates

EN

LADDR

MODE

STATE

EN

LADDR

MODE

STATE

ENO

RET_VAL

RET_VAL

ENO

LAD

FBD

Read status of distributed stations

SCL
#var_... := DeviceStates(LADDR := #var_... ,

MODE := #var_... ,
STATE := #var_...);

Parameter MODE Parameter STATE

Value Description

1 Configuration not completed
2 Station faulty
3 Station deactivated
4 Station available
5 Station has a problem

The STATE parameter displays every station with
a bit (1024 for PROFINET). The number of the bit
corresponds to the station or device number.
If the respective bit has signal state “1”, the status
indicated at the MODE parameter applies to the station.
The status is valid across all stations in bit 0:
If bit 0 has signal state “1”, the scanned status applies
to at least one station."

http://pnap.ir/siemens-s71200-price-list/

5 Edit user program

174

at least one of the stations is disrupted. If bit 4 is set to signal state “1”, the station
with device number 4 is disrupted.

The STATE parameter can be assigned to any tag or an operand area, for example,
with P#DB10.DBX0.0 BYTE 128, i.e. 1024 bits in data block %DB10 from data byte
%DBB0. If the tag or the area is too small, the status information is entered in the
available length and error number 16#8452 is output at parameter RET_VAL.

ModuleStates Read status of a module

ModuleStates reads the status of submodules in a module. At the LADDR param-
eter, specify the module ID and use the MODE parameter to select the type of sta-
tus information that is output at the parameter STATE for all submodules of the
module. Fig. 5.28 shows the function call.

The module ID can be found in either the System constants tab in the default tag
table or in the properties of the module in the Properties tab in the inspector win-
dow. under General in the Name field. At the LADDR parameter, enter this name or
select it from the drop-down list. You can also specify the numerical value of the
module ID, which is provided as a constant or variable in the System constants tab.

Via the MODE parameter you select the type of status information to be output at
the STATE parameter (Fig. 5.28). With a bit set to signal state “1”, the bit field at the

Fig. 5.28 Read status of a central module

DeclarationName

EN

ENO

LADDR

MODE

STATE

RET_VAL

–

–

INPUT

INPUT

INOUT

RETURN

BOOL

BOOL

HW_DEVICE

UINT

VARIANT

INT

Enabling input

Enabling output

Block ID

Type of information

Status information

Error information

DescriptionData typeModuleStates

ModuleStates

EN

LADDR

MODE

STATE

EN

LADDR

MODE

STATE

ENO

RET_VAL

RET_VAL

ENO

LAD

FBD

SCL
#var_... := ModuleStates(LADDR := #var_... ,

MODE := #var_... ,
STATE := #var_...);

Parameter MODE Parameter STATE

Value Description

1 Configuration not completed
2 Submodule faulty
3
4
5

Submodule deactivated
Submodule available
Submodule has a problem

The STATE parameter displays every each submodule
of a module with a bit (maximal 128). The number of
the bit corresponds to the slot of the submodule in
the module. If the respective bit has signal state “1”,
the status indicated at the MODE parameter applies
to the submodule. The status is valid across all
submodules in bit 0: If bit 0 has signal state “1”, the
scanned status applies to at least one submodule.

Read status of a central module

http://pnap.ir/siemens-s71200-price-list/

5.8 Troubleshooting, diagnostics

175

STATE parameter shows that the selected status information applies to a submod-
ule of the affected module. Example: If you want to determine which submodules
are disrupted, assign the value 2 to the MODE parameter. Bit 0 of the STATE param-
eter has signal state “1” if at least one submodule is disrupted. If bit 2 is set to signal
state “1”, the submodule at slot 2 is disrupted.

The STATE parameter can be assigned to any tag or an operand area, for example,
with P#M512.0 BYTE 16, i.e. 128 bits from memory byte %MB512. If the tag or the
area is too small, the status information is entered in the available length and error
number 16#8452 is output at parameter RET_VAL.

GET_DIAG Read diagnostic information

GET_DIAG reads the diagnostic information of a hardware object. At the LADDR
parameter, specify the ID of the hardware object. With the MODE parameter, select
the type of diagnostic information that is output at the DIAG parameter. Fig. 5.29
shows the function call.

Fig. 5.29 Read diagnostic information

Read diagnostic information

DeclarationName

EN

ENO

MODE

LADDR

DIAG

DETAIL

RET_VAL

CNT_DIAG

–

–

INPUT

INPUT

INOUT

INOUT

RETURN

OUTPUT

BOOL

BOOL

UINT

HW_ANY

VARIANT

VARIANT

INT

INT

Enabling input

Enabling output

Type of diagnostic data

Objekt-ID

Diagnostic information

Diagnostic details

Error information

Number of diag. details

DescriptionData typeGET_DIAG

GET_DIAG

EN

MODE

DIAG

LADDR

DETAIL

EN

MODE

DIAG

LADDR

DETAIL

ENO

RET_VAL

CNT_DIAG

CNT_DIAG

RET_VAL

ENO

LAD

FBD

SCL
#var_... := GET_DIAG(MODE := #var_... ,

LADDR := #var_... ,
CNT_DIAG := #var_... ,
DIAG := #var_... ,
DETAIL := #var_...);

Parameter MODE

Value Description

0 Output of the diagnostic information supported by the hardware object to DIAG

1 Output of own diagnostic status to DIAG

2 Output of the diagnostic status of all subordinate modules to DIAG and output of
the module status information to DETAIL

3

4

Output of the I/O status to DIAG, output of the number of additionally output details to
CNT_DIAG, and output of the channel statuses to DETAIL

Output of the diagnostic data of all subordinate modules to DIAG

The diagnostic information output at the DIAG and DETAIL parameters depends on the selected
hardware object (see operating instructions).

http://pnap.ir/siemens-s71200-price-list/

5 Edit user program

176

The object ID can be found either in the System constants tab in the default tag table
or in the properties of the hardware object in the Properties tab in the inspector win-
dow under General in the Name field. At the LADDR parameter, enter this name or
select it from the drop-down list. You can also specify the numerical value of the
object ID, which is provided as a constant or variable in the System constants tab.

Via the MODE parameter you select the type of information to be output at the
DIAG parameter (Fig. 5.29). The value 0 is used to query what diagnostic informa-
tion the hardware object supports. Each bit set to signal state “1” at the DIAG
parameter corresponds to an assignment of the MODE parameter: If the bit 1 is set,
MODE = 1 is supported. If the bit 2 is set, MODE = 2 is supported, etc. CNT_DIAG is
set to value 0; DETAIL is not changed.

If MODE = 1, the diagnostic information of the selected hardware object is output at
parameter DIAG. CNT_DIAG is set to value 0, DETAIL is not changed.

If MODE = 2, the diagnostic status of all the modules in the hardware object is out-
put at parameter DIAG. CNT_DIAG is set to value 1, DETAIL contains module state
information.

If MODE = 3, the state of the inputs and outputs of the selected hardware object is
output at parameter DIAG. CNT_DIAG is set to the number of module channels
whose status data is output at the parameter DETAIL.

If MODE = 4, the state of the inputs and outputs of all modules in the hardware
object is output at parameter DIAG. CNT_DIAG is set to value 0, DETAIL is not
changed.

5.8.6 Diagnostics interrupt OB 82

Appropriately designed modules can detect diagnostics events, for example
“No load voltage present” (I/O modules), overshoot and undershoot, wire break
and short-circuit (analog input modules). If the detection of a diagnostics event is
activated in the device configuration editor, the organization block OB 82 Diag-
nostics interrupt is called when the event occurs.

The diagnostics interrupt organization block is assigned to event class Diagnostic
error interrupt. It is of hardware data type OB_DIAG. The System constants tab of the
default tag table lists the name and value of the constant. The name of the constant
can be changed in the block properties.

You can only use one diagnostics interrupt OB in your program.

The OB 82 is processed if no other interrupt organization block is active, otherwise
the diagnostics event is entered into the queue.

When a diagnostics event occurs, it is written into the diagnostics buffer. If an OB 82
is not present when a diagnostics event occurs, the CPU ignores the event.

Calling of the diagnostics interrupt OB can be delayed or enabled using the
DIS_AIRT and EN_AIRT functions.

5.8 Troubleshooting, diagnostics

177

Start information

Table 5.11 contains the start information for OB 82. The tags of the start informa-
tion are transferred to the Input section of the block interface and are present in the
temporary local data.

The start information laddr provides the HW identification of the module or sub-
module which generated the diagnostics interrupt. Each hardware unit is provided
in the configuration with an ID whose value is listed in the default tag table in the
System constant tab. The names of the constants correspond to the names of the
modules or submodules assigned during the hardware configuration.

Table 5.11 Start information for OB 82

Variable Data
type

Description

IO_state WORD Contains the diagnostics state of the module with diagnostic capability

laddr HW_ANY HW identification

channel UINT Channel number (starts at 0)

multi-error BOOL With signal state “1”, more than one diagnostics event is present

Bit no. Meaning With signal state “0” With signal state “1”

Bit 0 Configuration
correct

Configuration no longer
correct

Configuration correct

Bit 4 Fault Fault no longer present Fault present

Bit 5 Configuration
not correct

Configuration is correct
again

Configuration not correct

Bit 6 Access to I/O
failed

I/O is accessible again I/O access error present
(the hardware ID is then
in laddr)

6 Program editor

178

6 Program editor

6.1 Introduction

This chapter describes how to work with the program editor, with which the user
program is written in the programming languages LAD, FBD, and SCL. The special
features of programming in the respective programming language are described in
the Chapters 7 “Ladder logic LAD” on page 209, 8 “Function block diagram FBD” on
page 246, and 9 “Structured Control Language SCL” on page 284.

The user program consists of blocks which are saved in the project tree under a PLC
station in the Program blocks folder. Logic blocks contain the program code, and
data blocks contain the control data. When programming, a block is initially cre-
ated and subsequently filled with data or a program. The programming languages
ladder logic (LAD), function block diagram (FBD), and structured control language
(SCL) are available for programming the control function. You can define the pro-
gramming language individually for each block.

The user program works with operands and tags. Block-local tags are declared
during programming of the blocks, global operands and tags are present in the PLC
tags folder. The PLC data types folder contains user-defined data structures for tags
and data blocks.

Programming is appropriately commenced by definition of PLC tags and PLC data
types. This is followed by the global data blocks with the already known data. For
the logic blocks, one starts with those which are at the lowest position in the call
hierarchy. The blocks in the next higher level in the hierarchy then call the blocks
positioned below them. The organization blocks in the highest hierarchy level are
created last.

The program editor makes various tools available to support you in program cre-
ation and testing. The cross-reference list contains the already programmed tags
and blocks and the point in the program where they are used. The assignment list
shows the current use of the inputs, outputs, and bit memories. The call and depen-
dency structure shows the sequence the blocks are called.

Following completion, the user program is compiled, i.e. the program editor con-
verts the data entered into a program which can be executed on the CPU.

6.2 PLC tag table

You work in the user program with operands which are e.g. inputs or outputs. These
operands can be addressed in absolute mode (e.g. %I1.0) or symbolic mode
(e.g. “Start signal”). Symbolic addressing uses names (identifiers) instead of the ab-

6.2 PLC tag table

179

solute address. As well as the name, you define the data type of the operand. The
combination of operand (absolute address, memory location), name, and data type
is referred to as a “tag”.

When writing the user program, a distinction is made between local and global tags.
A local tag is only known in the block in which it has been defined. You can use local
tags with the same name in different blocks for different purposes. A global tag is
known throughout the entire user program, and has the same meaning in all
blocks. You define global tags in the PLC tag table.

Refer to Chapter 6.6.1 “Cross-reference list” on page 201 for how to create a cross-
reference list of the PLC tags. Monitoring of tags using the PLC tag table is described
in Chapter 13.4.4 “Monitoring with the PLC tag table” on page 445.

6.2.1 Creating and editing the PLC tag table

When creating a PLC station, a PLC tags folder with the PLC tag table is also created.
You can open the PLC tag table by double-clicking on Default tag table in the PLC
tags folder. The default tag table consists of the Tags, User constants, and System
constants tabs.

You can create additional tag tables containing PLC tags and user constants with the
Add new tag table function. These self-created tables can be renamed and organized
in groups. A tag or a constant can only be defined in one of the tables. To obtain an
overview of all tags and constants, double-click on Show all tags in the PLC tags
folder.

You can save an incomplete or faulty PLC tag table at any time and process it again
later. However, the tag table must be error-free to enable compilation of the user
program.

6.2.2 Defining PLC tags

In the Tags tab, enter the name, data type, and address (operand, memory location)
of the tags used. The name can contain letters, digits, and special characters (no
quotation marks). It must not already have been assigned for a different PLC tag, a
symbolically addressed constant, a PLC data type, or a block. No distinction is made
between upper and lower case when checking the name.

You can add an explanatory comment to each defined tag. Table 6.1 contains the
operands and data types permissible as PLC tags. The data type defines certain
properties of the data associated with the name, basically the representation of the
data content. An overview of the data types used with a CPU 1200 and the detailed
description can be found in Chapter 4 “Variables and data types” on page 79.

Part of the operand area Bit memory can be set to retentive, i.e. this part retains the
signal statuses and values following a power off and subsequent power on. To set
the retain area, click in the toolbar of the PLC tags table on the Retain symbol and
enter the number of retentive memory bytes in the dialog which is then displayed.

6 Program editor

180

A tick in the Retain column then identifies which bit memory operands are reten-
tive.

The properties of a PLC tag include the attributes

b Accessible from HMI
When activated, an HMI station can access this tag during runtime.

b Visible in HMI
When activated, this tag is visible by default in the selection list of an HMI station.

Fig. 6.1 shows an example of a PLC tag table.

Table 6.1 Approved operands and data types for PLC tags

Input
operand

Output
operand

Bit memory
operand

Approved
data types

Address range

Input bit I Output bit Q Memory bit M BOOL I, Q: 0.01023.7
M: 0.04095.7 1)
M: 0.08191.7 2)

Input byte IB Output byte QB Memory byte MB BYTE, CHAR, SINT,
USINT

IB, QB: 01023
MB: 04095 1)
MB: 08191 2)

Input word IW Output word QW Memory word FW WORD, INT, UINT IW, QW: 01022
MW: 04094 1)
MW: 08190 2)

Input
double word ID

Output
double word QD

Memory
double word MD

DWORD, DINT,
UDINT, REAL, TIME

ID, QD: 01020
MD: 04092 1)
MD: 08188 2)

1) For CPU 1211 and CPU 1212 2) For CPU 1214 and CPU 1215

Fig. 6.1 Example of a PLC tag table

6.2 PLC tag table

181

6.2.3 Editing a PLC tag table

You can use Insert row from the shortcut menu to insert an empty line above the
selected line. Add row inserts a line after the selected line. The Delete command
deletes the selected line. You can copy selected lines and add them to the end of the
list. You can sort the lines according to the column contents by clicking the header
of the appropriate column. Sorting is in ascending order with the first click, in
descending order with the second click, and the original state is reestablished fol-
lowing the third click.

To fill out the table automatically, select the name of the tag to be transferred, posi-
tion the cursor at the bottom right corner of the cell, and drag downward over the
lines with the mouse button pressed.

If you enter the same name a second time, for example when copying lines, a con-
secutive number in parentheses is appended to the name. When filling out auto-
matically, this is an underscore character with a consecutive number. Double
assignment of an address is indicated by a colored background.

You can also supplement, change or delete the PLC tags when entering the user pro-
gram (described in Chapter 6.3.6 “Editing tags” on page 192).

In addition to the default tag table, which is always available, you can create further
PLC tag tables. In doing so, you may not give a tag multiple definitions. If you dou-
ble-click on Show all tags, the program editor creates an overview of the tags of all
of the tag tables.

You can compare a PLC tag table with one from another project if you mark the tag
table and select the command Tools > Compare > Offline/offline.

6.2.4 Exporting and importing a PLC tag table

A PLC tag table can also be created or edited using an external editor. The external
file is present in .xlsx format.

To export, open the PLC tag table and select the Export icon in the toolbar. Set the
file name and path in the dialog, and select the data to be exported (tags or con-
stants). The contents of the opened PLC tag table are exported. To export all PLC
tags, open the complete table by double-clicking on Show all tags and then select
the Export icon.

The external file contains the PLC tags worksheet for the PLC tags and the Constants
worksheet for the symbolically addressed user constants (Table 6.2).

To import, double-click on Show all tags under the PLC station in the PLC tags folder
in the project tree. Select the Import icon in the toolbar. Set the file name and path
in the dialog, and select the data to be imported (tags or constants). The contents of
the external file are imported into the tag table, which is specified in the Path col-
umn. Existing entries are identified by a consecutive number in parentheses
appended to the name and/or by an address highlighted in color.

6 Program editor

182

6.2.5 Constants tables

The PLC tag table in the User constants tab contains symbolically addressed con-
stant values which are valid throughout the CPU. You define a constant in the table
in that you assign a name, data type, and fixed value to it and you can then use this
constant in the user program with the symbolic name.

The constant name must not already have been assigned to another constant, a PLC
tag, a PLC data type, or a block. The name can contain letters, digits, and special
characters (but not quotation marks). No distinction is made between upper and
lower case when checking the name.

In the System constants tab, the default tag table contains the object IDs created by
the device configuration and the program editor. The data type of a constant indi-
cates the application, the value of a constant specifies the object. The data type and
the value are fixed, but you can change the name of the constant in the respective
object properties.

Example: The ID for a high-speed counter in the CPU has the data type Hw_Hsc and
a value, for example, between 258 and 263, corresponding to one of the counters 1
to 6. The name of the constant is set in the device configuration editor in the prop-
erties of the high-speed counter.

The constants are used in the user program if a hardware or software object is to be
addressed, for example a high-speed counter or an organization block: In the HSC
parameter, the CTRL_HSC function expects the ID for the high-speed counter to be
controlled, and the ATTACH statement processes the organization block whose ID
is specified by data type OB_ATT in the OB_NR parameter.

The data types of the system constants are combined under the term “Hardware
data types”. Section 4.9 “Hardware data types” on page 115 includes an example of
a constants table.

Table 6.2 Columns in the external file for the PLC tag table

Worksheet PLC tags

Name Path Data type Logical address Comment Hmi Visible Hmi Accessible

Name of
PLC tag

Group and name
of PLC tag table

Data type of
tag

Absolute address
(e.g. %I0.0)

Comments TRUE or
FALSE

TRUE or FALSE

Worksheet Constants

Name Path Data type Value Comment

Name of
constant

Group and name
of PLC tag table

Data type of
constant

Default value Comments

6.3 Programming a code block

183

6.3 Programming a code block

6.3.1 Creating a new code block

A prerequisite for creating a new block is that you have created a project and a
PLC station. First open the project. You can create a new block in either the Portal
view or the Project view.

In the Portal view, click PLC programming. An overview window appears in which
you can see the existing blocks. With a newly created project this is the organization
block OB 1 with the name Main (main program). Click on Add new block to open the
window for creating a new block.

In the Project view, the Program blocks folder is present in the project tree under the
PLC station. This folder is created together with the PLC station. The Program blocks
folder contains the Add new block editor. Double-click to open the window for creat-
ing a new block.

Then select the block type by clicking on the button with the corresponding symbol
(Fig. 6.2). Assign a meaningful name to the new block. The name must not already
have been assigned to a different block, a PLC tag, a symbolically addressed con-

Fig. 6.2 Add new block window with organization block selected

6 Program editor

184

stant, and a PLC data type. The name can contain letters, digits, and special charac-
ters (but not quotation marks). No distinction is made between upper and lower case
when checking the name.

Then select the programming language for the block. With automatic assignment
of the block numbers, the lowest free number for the type of block is displayed in
each case. If you select the Manual option, you can enter a different number. The
Optimized option activates the Optimized block access attribute and has effects on
addressing, the retentivity, and the data types of the tags used in the block. Activa-
tion of the check box is recommended.

You must assign an event class to an organization block, i.e. you specify the type of
organization block. Select the event class from the displayed list. Depending on the
event class, the block number is either fixed or freely-selectable. You can create
multiple organization blocks with different numbers for some event classes (see
Chapter 5.7.1 “Introduction to interrupt processing” on page 153).

You set the default setting when creating a new block in the main menu in the Proj-
ect view using the Options > Settings command in the PLC programming section.
Under General and Default setting for new blocks, you can set the preselection for IEC
check and Optimized block access.

If the Add new and open checkbox is activated in the Add new block window, the pro-
gram editor is started and programming of the newly created block can begin.

6.3.2 Working area of program editor for code blocks

The program editor is automatically started when a block is opened. Open a block
by double-clicking on its symbol: this can be found in the Portal view in the over-
view window of the PLC programming, and in the Project view in the Program
blocks folder under the PLC station in the project tree.

You can adapt the properties of the program editor according to your requirements
using the Options > Settings command in the main menu. Select the PLC program-
ming section, and set the font size, layout and width of the operand field under
LAD/FBD.

The program editor displays the opened block with interface and program in the
working window (Fig. 6.3). Prior to programming, the block properties are present
in the inspector window; during programming, the properties of the selected or
edited object are present here. The task window contains the program elements cat-
alog in the Statements task card.

The working window of the program editor shows the following details:

b The toolbar
contains the symbols for the programming menu commands (e.g. Insert net-
work, Delete network, Go to next error, etc.). The meaning of the symbols is dis-
played if you hold the mouse pointer over the symbol. Currently non-selectable
icons are grayed out.

6.3 Programming a code block

185

b The interface
shows the block interface with the block parameters and the block-local tags.

b The favorites bar
provides the favorite program elements (instructions), which can also be found
in the Favorites section of the program elements catalog. You can activate and
deactivate the display in the editor: Click with the right mouse button in the
favorites catalog or favorites bar and activate or deactivate Display favorites in
editor. To add a instruction to the favorites, select the instruction in the program
elements catalog and drag and drop it with the mouse into the favorites catalog
or favorites bar. To remove a instruction from the favorites, click with the right
mouse button and then select Remove instruction.

b The block window
contains the block program. Enter the control function of the block here.

Fig. 6.3 Example of the program editor's working window in ladder logic

6 Program editor

186

The workspace is maximized by clicking on the Maximize icon in the title bar. Click
on the Embed icon to embed it again. Display as a separate window is also possible:
Click in the title bar on the icon for Float icon. Using the Window > Split editor space
vertically and Window > Split editor space horizontally commands in the main menu,
various opened objects can be displayed and edited in parallel, e.g. the PLC tag table
and a block.

6.3.3 Specifying code block properties

To set the block properties, select the block in the Program blocks folder, followed
by the Edit > Properties command in the main menu or the Properties command in
the shortcut menu.

The block properties that can be changed are described in detail in Chapter 5.3.2
“Editing block properties” on page 128. You set the Optimized block access attribute
when creating the block and then you can no longer change it. It is recommendable
to set the IEC check attribute prior to block programming. A block can be protected
against illegal access (“know-how protection”) and illegal use (“copy protection”).

6.3.4 Programming a block interface

The block interfaces of the logic blocks contain the declaration of the block-local
tags. The interface structure depends on the type of block. Table 6.3 shows the indi-
vidual declaration sections of the blocks. The meaning of the declaration modes is
described in detail in Section 5.3.5 “Block interface” on page 133.

You can increase or decrease the size of the block interface window by dragging on
the bottom edge with the mouse. Two arrows at the bottom can be used to open and
close the window. Fig. 6.4 shows an example of a function block interface.

You can click on the triangle to the left of the declaration mode to open the declara-
tion section or to close it. If you select a line with the right mouse button, you can
delete it in the shortcut menu, insert an empty line above it, or add an empty line
after it.

Table 6.3 Declaration sections of the block interface

Declaration section Meaning Permissible with block type

Input Input parameters OB (see text) FC FB

Output Output parameters – FC FB

InOut In/out parameters – FC FB

Static Static local data – – FB

Temp Temporary local data OB FC FB

Return Function value – FC –

6.3 Programming a code block

187

The name can contain letters, digits, and special characters (but not quotation
marks). No distinction is made between upper and lower case when checking the
name. A drop-down list shows the currently permissible data types. You can use the
comment to describe the purpose of the respective tag.

The Default value column is displayed for a function block (FB). You can enter a
default value here which is saved in the instance data block. The Retain column is
displayed in the interface of function blocks if the Optimized block access attribute
is activated in the block. Here you can set the retentivity for individual tag values
(Non-retentive, Retentive, Set in IDB). If Optimized block access is not activated, the
retentivity can only be set in the instance data block, and only for the complete
interface.

Neither a default value nor the retentivity can be set for the temporary local data.

The organization blocks OB 80 Time error, OB 82 Diagnostics interrupt, and OB 100
Startup program as well as all other organization blocks of event class Startup pro-
vide start information for the user program. Although this start information is
located in the CPU's system memory like the temporary local data, it is shown in the
declaration section Input.

In the case of a function (FC), the function value with the name Ret_Val and data
type VOID is displayed in the interface in the Return section. The function value has
no significance when programming with ladder logic and function block diagram.

Fig. 6.4 Example of function block interface

6 Program editor

188

The data type VOID prevents the display in the call box. If you specify a different
data type here, the function value is treated like the first output parameter. Using
the SCL programming language, you can integrate a function in an expression
instead of a tag with the data type of the function value (see Section “Using a func-
tion value of a function (FC)” on page 139).

For logic blocks with deactivated Optimized block access attribute, tags in the block
interface can be overlaid with other data types (see Chapter 4.3.3 “Overlaying tags
(data type views)” on page 93).

6.3.5 Programming control functions

Working with networks

A network is part of a logic block which, in the case of the LAD and FBD program-
ming languages, contains a complete current path or a complete logic operation.
No networks are possible with SCL.

The program editor automatically numbers the networks starting from 1. You can
assign a title and a comment to each network. When editing, you can directly select
any network from the main menu using the Edit > Go to > Network / line command.

The networks can be opened or closed. To do this, select Network with the right
mouse button and then select the Collapse or Expand command from the shortcut
menu, or click in the toolbar of the working window on the Close all networks or
Open all networks icon.

When programming the last network in each case, an empty network is automati-
cally appended. To program a new network, select the Insert > Network command
from the shortcut menu. The editor then adds an empty network after the currently
selected network.

You can show or hide the network comments using the Network comments on/off
icon in the toolbar or the View > Display with > Network comments command in the
main menu.

Following each network, the tags used in the network can be shown with name,
address, and comment. You can show or hide the tag information using the Tag
information on/off icon in the toolbar or the View > Display with > Tag information
command in the main menu.

The network comments and tag information view can be set for all blocks with
the command Options > Settings in the main menu under the group PLC Program-
ming > View by activating the relevant option With comments and/or With tag in-
formation.

6.3 Programming a code block

189

Program elements catalog

All program elements permissible for the respective programming language (con-
tacts, coils, boxes, statements, etc.) can be found in the program elements catalog
in the task window. The program elements catalog is divided into the following
groups

b Favorites (frequently required program elements)

b Basic instructions (basic functions)

b Extended instructions (functions implemented by system blocks)

b Technology (technological functions, e.g. for PID controllers or
high-speed counters)

b Communication (communication functions for data transmission and
for communication modules).

You can combine a selection of frequently used program elements in the Favorites
catalog and display them in the favorites bar of the program editor to allow rapid
selection.

General procedure when programming

To enter the program code, position the program elements in the desired arrange-
ment and subsequently supply them with tags or enter the statement lines. The
program editor immediately checks your inputs and indicates faulty entries.

You can interrupt block programming at any time – even if the program is still
incomplete or faulty – and continue later. You can store a block by saving the com-
plete project using the Project > Save command from the main menu.

You can save the structure of the windows and tables using the Save window settings
icon in the top right corner of the working window. This structure is reestablished
the next time the working window is opened.

Programming a control function with ladder diagram (LAD)

To program the control function in LAD, select a program element in the catalog
and drag it with the mouse into the open network under the network comment. The
first program element is positioned automatically. With the next program element,
small boxes indicate where the new program element may be positioned and – in
green – where it is positioned when you “drop” it.

In the ladder logic, the binary logic operations are implemented by series and par-
allel connections (Fig. 6.5). With the ladder logic, the Q or ENO output is positioned
in the display at the top edge of the box in order to be able to “hang” the box into
the current path. The structure of an LAD current path is described in Chapter 7
“Ladder logic LAD” on page 209.

6 Program editor

190

Programming a control function with function block diagram (FBD)

To program the control function in FBD, select a program element in the catalog
and drag it with the mouse into the open network under the network comment. The
first program element is positioned automatically. With the next program element,
small gray boxes indicate where the new program element may be positioned and
– in green – where it is positioned when you “drop” it. You can also position pro-
gram elements freely in the network and subsequently connect the corresponding
inputs and outputs.

Binary logic operations are represented in the function block diagram by AND, OR,
and exclusive-OR boxes (Fig. 6.6). The Q and ENO outputs are positioned at the bot-
tom edge where they can be connected to the input of the following program ele-
ment. The structure of an FBD logic operation is described in Chapter 8 “Function
block diagram FBD” on page 246.

Fig. 6.5 Example of ladder logic

Fig. 6.6 Example of function block diagram

6.3 Programming a code block

191

Selection of function and data types with drop-down lists (LAD, FBD)

Many program elements have a variable design with
regard to both function and data types. For example,
if you select the ADD box from the mathematical
functions, three question marks are shown under-
neath the function designation ADD instead of the
data type. If you click on the ADD box, a small yellow
triangle is displayed on the top right-hand corner as
an indication that a drop-down list is present behind
it. In this case, the drop-down list shows the data
types permissible at this point, from which you can
select the desired data type (Fig. 6.7).

If a small yellow triangle is displayed in the top right
corner of the program element (contact, coil, box), you can select a different func-
tion here for the program element from a drop-down list.

The empty box – which can be found in the favorites or in the program elements cat-
alog under General – is particularly flexible here. Here you can select almost all pro-
gram elements from the (function) drop-down list.

Programming a control function with Structured Control Language (SCL)

The control function is entered in SCL as “structured text”. You can drag all state-
ments from the program elements catalog into the working area. With basic
instructions, for example a binary or digital operation, it is simpler to enter the
statements with the keyboard.

Binary and digital logic operations are implemented in the SCL representation by
expressions (Fig. 6.8). An expression is terminated by a semicolon. In the case of
block calls and complex functions implemented as blocks, the block parameters are
listed in parentheses following the function name. The structure of an SCL expres-
sion is described in Chapter 9 “Structured Control Language SCL” on page 284.

Fig. 6.8 Example of representation as Structured Control Language

Fig. 6.7 Selection of data type
using drop-down list

6 Program editor

192

6.3.6 Editing tags

Almost all program elements require tags in order to execute their function. Follow-
ing insertion in the working area, a program element must be supplied with tags.
Fig. 6.9 shows a CTUD up/down counter as a single instance with the instance data
block “IEC_Counter_DB” in the various programming languages.

LAD and FBD indicate with three red question marks that you must enter a tag here.
If three dots are displayed, supplying a tag is optional. With SCL, the missing tags
are occupied by dummy values which have to be replaced by “real” tags.

The program editor displays the global tags enclosed by quotation marks. Local
tags are preceded by a number sign (#); if they possess special characters, these are
additionally enclosed by quotation marks. Operands (absolute addresses) are pre-
ceded by a percentage sign (%).

You can display the tags with absolute address, symbol address, or both. The set-
ting is carried out using the View > Display with > Address information command
from the main menu, or with the Absolute/symbolic operands symbol in the toolbar
of the program editor.

The program editor provides support for the input of tags: When you enter the first
letters of the name of a missing tag, the editor provides a list of (previously defined)
tags which can be considered for the current data type. You can then choose the
desired tag.

The data type of the tag must correspond to the data type of the supply position.
If the IEC check attribute is activated in the block, it must be exactly the same data
type. If the attribute is deactivated, it is sufficient if the tag has the appropriate data
width.

If you enter an operand with the appropriate data width which is not present in the
PLC tag table, the editor creates a new “Tag_x” in the PLC tag table, with x as a con-
secutive number. By clicking with the right mouse button on a tag and selecting the
command Rename tag from the shortcut menu, you can assign a different name to
the tag. With Rewire tag you can assign a different absolute address to the tag.

When programming the control function, you can also enter the name of a tag
which does not yet exist. The name of the tag is then underlined in red. By clicking

LAD representation FBD representation SCL representation

Fig. 6.9 Supply of box inputs and outputs

http://pnap.ir/siemens-s71200-price-list/

6.3 Programming a code block

193

with the right mouse button on the undefined tag and selecting the command
Define tag from the shortcut menu, you are provided with a new window in which
you can define the tag (Fig. 6.10). You can also select the operand area in which the
tag is to be positioned: Input, output or in/out parameter, static or temporary local
data, bit memories, inputs or outputs.

6.3.7 Working with program comments

With LAD and FBD as the programming languages, you can enter a “free-form com-
ment” for each coil or box (LAD) and for each non-binary box (FBD). Right-click on
the program element and select Insert comment from the shortcut menu. The pro-
gram editor displays a comment box with an arrow pointing to the selected pro-
gram element. You can then enter a comment in the box. You can shift the box
within the network or increase its size using the triangle at the bottom right corner
(Fig. 6.11).

The programming language SCL provides line and block comments. Line com-
ments are commenced by two slashes and extend up to the end of the line. A line

Fig. 6.10 Defining tags during program input

Free comments for LAD and FBD

Block and line comments in SCL

Fig. 6.11 Comments on the control function

http://pnap.ir/siemens-s71200-price-list/

6 Program editor

194

comment can also stand alone in a line, for example as a heading. A block comment
is starts with left parenthesis and asterisk and ends with a asterisk and right paren-
thesis. Example: (* This is a block comment *). It can extend over several lines.

In SCL, you can eliminate the comment in a code line by positioning the cursor in
the code line and clicking the Disable code icon in the toolbar of the working win-
dow. Two slashes are then placed at the beginning of the code line. You can reverse
the procedure using the Enable code icon.

6.4 Programming a data block

6.4.1 Creating a new data block

It is only possible to create a new data block if a project and a PLC station have first
been created. First open the project. You can create a new data block in either the
Portal view or the Project view.

In the Portal view, click PLC programming and subsequently Add new block. In the
Project view, double-click on Add new block in the Program blocks folder. In the win-
dow for creating a new block, select the symbol for Data block.

Data blocks must be assigned a type:

b A global data block contains the tags which you specify when programming the
data block. You can design the contents and structure of the data block as
desired.

b An instance data block contains the block parameters and static local data of a
function block (FB). The data structure is specified when programming the block
interface. For instance data blocks for system functions, the structure is already
specified and cannot be changed.

b A data block with assigned data type (“type data block”) contains the tags with the
structure of a PLC data type or a system data type. The data structure is defined
during programming of the PLC data type or is specified by the system data type.

The Type drop-down list shows the blocks and data types which have already been
programmed and are thus currently available for use. Select the entry from the list
with which you wish to structure the data block to be created. Select the Global DB
entry for a data block whose content you wish to structure as desired.

Assign a meaningful name to the new block. The name must not already have been
assigned to a different block, a PLC tag, a symbolically addressed constant, or a PLC
data type. The name can contain letters, digits, and special characters (but not quo-
tation marks). No distinction is made between upper and lower case when checking
the name.

The language for data blocks is always DB. With the automatic assignment of the
block numbers, the lowest free number for the type of block is displayed in each
case; if you select Manual, you can enter a different number. You set the Optimized
for block access option here for a global data block. In the case of an instance data

6.4 Programming a data block

195

block, it is imported from the assigned function block and the attribute Optimized
block access is fixed for a data block derived from a data type. Optimized block access
has effects on the addressing and retentivity of the tags used in the data block. Acti-
vation of the option is recommended.

If the Add new and open checkbox is activated, clicking OK starts the program editor
and the data block is opened.

6.4.2 Working area of program editor for data blocks

The program editor is automatically started when a data block is opened. Open a
block by double-clicking on its icon: This can be found in the Portal view in the over-
view window of the PLC programming, or in the Project view in the Program blocks
folder under the PLC station in the project tree. The program editor's working win-
dow shows the following details for a data block (Fig. 6.12):

b The toolbar
contains the icons for Insert row, Add row, Reset start values, Updates the interface,
Snapshot of the monitored values, Expanded mode, and Monitor all. The meaning
of the symbols is displayed if you hold the mouse pointer over the symbol. Cur-
rently non-selectable icons are grayed out.

b The tag declaration
shows the contents of the data block.

The working area can be maximized by clicking on the Maximize symbol in the title
bar, and embedded again using the symbol for Embed. Display as a separate window
is also possible: click in the title bar on the symbol for Float.

Fig. 6.12 Example of the program editor's working window for data blocks

6 Program editor

196

You can save the structure of the windows and tables using the Save windows set-
tings icon in the top right corner of the working window. This structure is reestab-
lished the next time the working window is opened.

6.4.3 Defining properties for data blocks

To set the block properties, select the block in the Program blocks folder, followed
by the Edit > Properties command in the main menu or the Properties command in
the shortcut menu. The block properties that can be changed are described in detail
in Chapter 5.3.2 “Editing block properties” on page 128. A data block can be pro-
tected against illegal access (“know-how protection”) or illegal use (“copy protec-
tion”). You can only set the Optimized block access attribute for a global data block
when creating a block; afterwards, it can no longer be changed.

6.4.4 Declaring data tags

The declaration table shows the following columns depending on the block proper-
ties and the editing environment:

b Name: The name can contain letters, digits, and special characters (but not quo-
tation marks). No distinction is made between upper and lower case when check-
ing the name. The name is block-local, and therefore the name can also be used
in other blocks for different tags. In association with the data block whose name
applies throughout the CPU (“globally”), a data tag becomes a “global” tag appli-
cable throughout the CPU.

b Data type: Select the data type of the tag from a drop-down list, or enter it
directly.

b Offset: The offset indicates the relative address of the tag with respect to the start
of the data block or the start of a data structure. The column is only shown if the
Optimized block access attribute is not activated in the data block. The offset is
shown after the data block has been compiled.

b Default value: The default value is the value which is automatically assigned to a
new tag depending on the data type. Example: With the data type DATE, the
default value is DATE#1990-01-01. If the data block is based on a data type (type
data block) or a function block (instance data block), the tag value defined in the
data type or in the function block is present in the Default value column.

b Start value: The Start value column lists the individual default values of the tags
for this data block. The default value is used if a start value is not entered. The
start value is the value with which the data block is loaded into the CPU's work
memory. With an instance data block, it is then possible to commence each call
(each instance) with different start values.

b Snapshot: The Snapshot column shows the “frozen” monitoring values from
the work memory at the time of the snapshot.

6.4 Programming a data block

197

b Monitor value: The monitoring value indicates the actual values of the tags in
online mode. This is the value present when the work memory is scanned.
This column is only displayed in Monitoring mode.

b Retain: A tick in this column indicates that the tag is retentive. If the Optimized
block access attribute is activated for the global data block, individual tags can
be set as retentive, otherwise only the complete data block. For an instance data
block, configure the retentivity of the individual tags in the assigned function
block. For a type data block, only the complete data block can be set to retentive
or non-retentive.

b Visible in HMI: A tick in this column means that the tag is visible in the selection
list of HMI stations by default.

b Accessible from HMI: A check in this column indicates that an HMI station can
access this tag.

b Comment: The comment allows input of an explanation of the purpose of the
tag.

You can determine the columns to be displayed yourself: Right-click in the line with
the column headers and then select the Show/hide columns > ... command from the
shortcut menu. You can then select or deselect the columns to be displayed.

Expanded mode

The expanded mode is activated using the Expanded mode icon in the toolbar of the
working window. All tags with structured data types such as DTL, ARRAY, STRUCT,
PLC data types, and system data types are then “opened” (expanded) so that the
individual components can be shown and – if allowed – assigned values (Fig. 6.13).

Fig. 6.13 Example of structured data types in expanded mode

6 Program editor

198

6.4.5 Entering data tags in global data blocks

With a global data block, you enter the data tags directly in the block. In the Name
column you specify the name of the tag. Following input of the name, select the data
type from a drop-down list, enter a start value if applicable, and use a comment to
explain the purpose of the tag.

With the STRING data type, enter the maximum length of the string in square brack-
ets. If this data is missing, the standard length of 254 characters is used.

With the ARRAY data type, you must enter the range limits and the component data
type. For example, the information in the drop-down list Array [lo .. hi] of type could
then result in Array [1 .. 12] of Real. If you click on the triangle to the left of the tag
name, the components are displayed, and you can assign individual start values to
them as default values.

Select the STRUCT data type from the drop-down list and, in the line under the tag
name, enter the name of the first component, its data type, possibly a default set-
ting, and a comment. The next line contains the second component, etc.

When programming a tag with PLC data type, select the PLC data type from the
drop-down list. If you click on the triangle to the left of the tag name, the compo-
nents are displayed, and you can assign individual start values to them as default
values.

When programming a tag with a system data type whose structure is defined by
STEP 7, such as ErrorStruct or IEC_TIMER, you cannot change the structure and can
only carry out a default setting for individual components where permissible.

6.5 Compiling blocks

Compilation generates a program code which can execute in the CPU. A compila-
tion process is always triggered prior to downloading the user program to the PLC
station. Only blocks which have been compiled without errors can be downloaded.

It is recommendable to also trigger compilation while generating the user program
to enable a quick response to any programming errors.

6.5.1 Starting the compilation

You start the compilation using a command from the shortcut menu.

b To compile a block opened in the program editor, click with the right mouse but-
ton on the white background of the working area and select the Compile com-
mand.

b To compile a block listed in the call structure or in the dependency structure,
click with the right mouse button on the block and select the Compile command.

b To start the compilation process for the selected block, click with the right mouse
button on the block in the Program blocks folder in the project tree followed by
the Compile > Software command.

6.5 Compiling blocks

199

b You can also select several blocks in the Program blocks folder and compile them
together using the Compile > Software command from the shortcut menu.

b You can compile the entire user program by selecting the Program blocks folder
followed by Compile > … from the shortcut menu. You then have the choice
between … Software (compile program changes since last compilation only) and
… Software (rebuild all blocks) (compilation of entire program).

b If you select the PLC station folder and then Compile > … from the shortcut menu,
you can select between

– … All (complete compilation of all project information relevant to execution)

– … Hardware configuration (compilation of device and network configuration)

– … Software (compilation of program changes since last compilation only) and

– … Software (rebuild all blocks) (compilation of entire user program)

The result of the compilation is displayed in the inspector window in the Info tab
under Compile (Fig. 6.14). Any warnings which have been detected do not prevent
continuation of the compilation. Any errors which have been detected are displayed
in the result of the compilation, and end the compilation.

6.5.2 Compiling SCL blocks

You can set the attributes for compilation in the properties of SCL blocks. The set-
ting for all newly created blocks is specified in the main menu under Options > Set-
tings and PLC programming > SCL > Compile.

The activatable attributes are:

b Create extended status information
permits monitoring of all tags in a block.

Fig. 6.14 Example of compilation information in the inspector window

6 Program editor

200

b Check ARRAY limits
checks the limits of ARRAY tags during runtime and sets ENO to FALSE in
the event of a limit violation.

b Set ENO automatically
checks whether errors have occurred in program execution during runtime
and sets ENO to FALSE in the event of an error.

Activation of one of the attributes increases the memory requirements and pro-
cessing time of the block.

6.5.3 Eliminating errors following compilation

An error is indicated by a white cross on a red circle in the line of the faulty block.
Click on the triangle to the left of the block name to open the list with the compila-
tion messages.

Click on the blue question mark in an error message to display more information
about the error. Double-clicking on an error message displays the program envi-
ronment of the selected error in the working window so that you can correct the
error directly.

Correcting a faulty block call

During the compilation, the program editor checks whether the supply of block pa-
rameters present in the calling block agrees with the interface of the called block.
An error is not signaled if the program editor can correct the block call when com-
piling.

If you double-click on the error message, the program editor opens the point in the
program with the faulty call. You can then correct the call, for example by entering
missing actual parameters or by using actual parameters with the correct data type.
If the block call is displayed with a red border, select the Update command from the
shortcut menu. The program editor suggests a modified block call in the Interface
update window which you can import unchanged or following modification
(Fig. 6.15).

Fig. 6.15 Interface update in the case of faulty block calls

6.6 Program information

201

Not all block parameters have to be supplied for a function block call. If such a block
parameter is added subsequently, the compilation does not signal an error – the
supply simply remains open. Even if the assignment of the static local data is
changed, a new instance data block is generated during the compilation, and an er-
ror message is not produced. If the instance data block for compilation is missing,
a new data block with the next free number is simply generated, also without an er-
ror message.

Under Options > Settings and PLC programming > General > Compilation, you can
select the option Delete actual parameters on interface update. The result is that an
actual parameter is deleted when compiling or updating the interface if the associ-
ated block parameter has been deleted. An error message is then not output.

How you can nevertheless find the call of a block with a subsequently modified in-
terface in the program is shown in Section 6.6.5 “Consistency check” on page 206.

6.6 Program information

The following program information supports you during programming and pro-
gram debugging:

b Cross-references

b Assignment list (inputs, outputs and bit memories)

b Call and dependency structures

b Resources

You can start the individual tools at any time during program creation, either in the
main menu using the Tools > … command or in the project tree by double-clicking
Program info under a PLC station. Following commissioning, the program informa-
tion can be part of the project documentation.

6.6.1 Cross-reference list

The cross-reference list indicates the use of tags, hardware constants, and blocks in
the user program. It provides an overview of

b Which objects have been used

b At which position in the program they have been used, and

b the context in which they were used, e.g. whether there is read or
write access to a tag .

You can create cross-references from any data object of a station: select the station,
a folder under the station, or one or more objects in a folder, e.g. one or more
blocks or PLC tags, and then select the Cross-reference list command from the short-
cut menu or the Tools > Cross-references command from the main menu. The cross-
reference list is available in two views: Used by and Uses.

6 Program editor

202

Cross-reference list Used by

The Used by view is based on the referenced object. It shows the positions at which
the object present in the first column is used (Fig. 6.16). For example, all the posi-
tions of where a block is called are shown, or all the program positions at which a
tag is used. If the list entries are opened, a link in the Point of use column leads
directly to the program position at which the object is used.

You can select the view options using the spanner icon in the toolbar of the cross-
reference list: Show used and/or Show unused.

Cross-reference list Uses

The Uses view displays the objects used by the referenced object. It shows which
objects are used (Fig. 6.17). With a block, for example, it shows which blocks are

Fig. 6.16 Example of a cross-reference list in the Used by view

Fig. 6.17 Example of a cross-reference list in the Uses view

6.6 Program information

203

called within it and which tags are used within it. If the list entries are opened, a link
in the Location column leads directly to the program position at which the associ-
ated object is used.

You can select the view options using the spanner icon in the toolbar of the cross-
reference list: Show defined and/or Show not undefined.

Display of cross-references in the inspector window

Select an object, e.g. a block in the project tree or a tag in the working window, and
then select the Cross-reference information command in the shortcut menu. The
inspector window – under Cross-references in the Info tab – shows the program posi-
tions at which the selected object has been used. If the cross-reference list is open
in the inspector window, the use of the selected object is displayed directly.

6.6.2 Assignment list

The assignment list shows the assignment of the operand areas: inputs (I), outputs
(Q) and bit memories (M). Peripheral inputs (I:P) which are used are shown under
the input address, peripheral outputs (Q:P) which are used are shown under the
output address. The use of operands as bit, byte, word or doubleword operands or
tags is displayed.

You can display the assignment list for individual blocks or for the entire program:
Select the blocks, the Program blocks folder or the folder of the PLC station, and
then select Assignment list from the shortcut menu or Tools > Assignment list in the
main menu (Fig. 6.18).

Fig. 6.18 Example of an assignment list

6 Program editor

204

Display of input/output assignment

A yellow background for inputs and outputs indicates that the address is not used
by the hardware or that no hardware has been configured for this address. If you
additionally address a bit in a byte, word or double word operand, the entry has a
gray background. You can use the View options symbol in the toolbar of the assign-
ment list to select whether the used addresses and/or the free hardware addresses
are to be displayed.

Display of bit memory assignment

The view option must be set to Used addresses in order to display the bit memory
assignment. With the bit memories, symbols are used for the operands to indicate
those which are set as clock and system memories, and up to which address the bit
memories are retentive. You can switch the retentivity display on and off using the
corresponding symbol in the toolbar. You can set the retentive range for the bit
memories using the Retain symbol.

Filter

You can filter the display of the assignment list using the Filter symbol in the tool-
bar. You specify which addresses (operands) you wish to view: to select the operand
area, activate the associated check box. You can select all addresses as the filter area
(with an asterisk: *), a section of the address area using a hyphen (e.g. 0-100),
an individual address (e.g. 101), or several areas separated by a semicolon
(e.g. 0-100; 120-124; 160).

If you wish to repeatedly use the particular settings of a filter, assign a name to it in
the drop-down list of the filter dialog. You can then use this name to recall the filter
settings from the drop-down list in the toolbar of the assignment list. You can also
delete filter names again.

6.6.3 Call structure

The call structure describes the call hierarchy of the blocks. To display the call struc-
ture, select the PLC station or Program blocks folder for the entire program or for
individual blocks and then select Call structure from the shortcut menu or Tools >
Call structure from the main menu.

The call structure shows the used blocks and the logic blocks called from these
blocks or the data blocks used in them (Fig. 6.19). The blocks that are not called in
the user program are present in the first level (color highlighted) – in the finished
program, these should only be the organization blocks.

Starting with the call structure, you can display the cross-reference information or
open a block for processing with the program editor. The consistency test for the
block calls is described in Chapter 6.6.5 “Consistency check” on page 206.

You can set the view options using the View options icon in the toolbar: Show con-
flicts only then displays the call paths in which conflicts have been detected, e.g.

6.6 Program information

205

interface conflicts, recursive calls, or non-existent block calls. Group multiple calls
together displays several calls of a block or data block access operations in a single
line, and specifies the number of calls in a separate column.

For compiled blocks, the memory requirements for temporary local data of a block
and in the path are displayed.

6.6.4 Dependency structure

The dependency structure shows the dependencies of each block. To display the
dependency structure, first select the PLC station or Program blocks folder for the
entire program or for individual blocks, and then select Tools > Dependency struc-
ture from the main menu.

For each logic block the dependency structure shows the block from which it is
called, and for each data block the logic block in which it is used (Fig. 6.20).

From the dependency structure, you can display the cross-reference information or
open a block for processing with the program editor. The consistency test for the
block calls is described in the next Chapter 6.6.5 “Consistency check”.

You can set the view options using the View options icon in the toolbar: Show con-
flicts only then displays the call paths in which conflicts have been detected, e.g.
interface conflicts, recursive calls, or non-existent block calls. Group multiple calls
together displays several calls of a block or data block access operations in a single
line, and specifies the number of calls in a separate column.

Fig. 6.19 Example of call structure

6 Program editor

206

6.6.5 Consistency check

Clicking on the Consistency check icon in the toolbar of the call structure or depen-
dency structure displays block calls with an “interface conflict”. These are block
calls whose interface is subsequently changed, such as by assigning another data
type to a block parameter or by adding a block parameter.

Blocks which have not yet been compiled following a modification are displayed
with a red border. In order to compile individual blocks in the call or dependency
structure, select Compile in the shortcut menu.

If interface conflicts cannot be eliminated by a repeated compilation, they must be
handled manually. The link in the Details column leads to the faulty block call.

Open the calling block, select the block call identified as faulty, and select the
Update command from the shortcut menu. When updating the block call, the pro-
gram editor shows what the updated block call will look like in the Interface update
window (for an example, see Fig. 6.15 on page 200). You can then carry out correc-
tions and supplements in this window, for example if a new block parameter has
been added.

6.6.6 CPU resources

Resources shows the assignment of the user memory and of the existing input/out-
put modules. To display resources, first select the PLC station, Program blocks folder
or individual blocks, and then select the Resources command from the shortcut
menu or Tools > Resources from the main menu.

Fig. 6.20 Example of dependency structure

6.7 Language setting

207

The resources function shows in three columns the maximum available and actual
storage space being utilized by the load memory, work memory and retentive mem-
ory (Fig. 6.21). You can see the utilization for each type of block, for individual
blocks and for the PLC tags. Question marks represent blocks which have not yet
been compiled. The values are then displayed in red in the total lines.

You can set the maximum size of the load memory: Click on the displayed memory
size in the Total box in the Load memory column, open the drop-down list, and set
the corresponding value if you wish, for example, to expand the load memory with
a memory card.

The existing (configured) input/output modules are divided according to DI, DO, AI
and AO, together with information on how many of them are used in the program.
Starting with the resources function, you can display the properties of a marked
block in the inspector window or open a block for processing with the program
editor.

6.7 Language setting

STEP 7 offers several options for working with different languages:

b The language of the operating system (character set)

b The language of the user interface of the TIA Portal

b The language of the mnemonic for the operations and operands

b The editing language and the project languages for the user text

b The language of the HMI device

Language settings can be made independent of each other.

Fig. 6.21 Example of Resources

6 Program editor

208

Language settings in the operating system

If you are working with a multilingual version of the operating system (MUI ver-
sion), set the desired character set using the Windows Control Panel.

The language of the user interface and mnemonic

STEP 7 Basic is operated with the language of the user interface. This comprises, for
example, the menu names and the error messages of the TIA Portal. You can set this
language in the Project view in the main menu using Options > Settings in the Gen-
eral section. The languages installed with STEP 7 are offered for selection under
User interface language. You also set the programming mnemonics in this tab,
i.e. the language in which the program editor uses the operands and operations.
For example, with the German setting, “E” stands for “Eingang”, and with the Inter-
national setting, “I” stands for “Input”.

Editing language

The user texts are entered in the editing language. These are, for example, com-
ments on PLC tags or the program. The editing language is independent of the lan-
guage of the user interface. You select the editing language in the project tree
under Languages & Resources > Project languages from the Editing language drop-
down list.

Project languages

The text entered in the editing language can be translated into various project lan-
guages and displayed. You specify the available project languages in the project tree
under Languages & Resources > Project languages. All entered user texts can be
found in the project tree under Languages & Resources > Project texts in the User
texts tab. The entered texts in of the editing language and the selected project lan-
guages are shown. You can enter text directly or edit it here. The displayed texts are
oriented on a reference language that you specify under Languages & Resources >
Project languages in the Reference languages drop-down list. You can also export the
texts for translation and reimport the translated texts.

To display the translated user texts in configuration and programming, select the
desired project language as editing language.

Language of the HMI station (HMI project language)

The HMI station can be provided with a multilingual user interface. You set the lan-
guages available at runtime in the project tree under the HMI station and Runtime
settings. The project languages set under Languages & Resources > Project lan-
guages can be selected.

If during runtime you wish to switch over to another language available on the HMI
station, an operator-accessible object, e.g. a button, must have been linked to the
language switchover during configuration. Following selection, the new language
is applied immediately. When the HMI station is switched on, the language that was
active last is always set.

7.1 Introduction

209

7 Ladder logic LAD

7.1 Introduction

This chapter describes programming with ladder logic (LAD); it uses examples to
show how the program functions are represented in LAD. You can find a description
of the individual functions, e.g. comparison functions, in Chapter 10 “Basic func-
tions” on page 328.

Use of the program and symbol editor, which generally applies to all programming
languages, is described in Chapter 6 “Program editor” on page 178.

LAD is used to program the contents of blocks (the user program). What blocks are,
and how they are created, is described in Chapters 5.3 “Programming blocks” on
page 125 and 6.3 “Programming a code block” on page 183.

7.1.1 Programming with LAD in general

You use LAD to program the control function of the programmable controller – the
user program or control program. The user program is organized in different types
of blocks. A block is divided into sections referred to as “networks”. Each network
contains at least one current path that may also have an extremely complex struc-
ture. Each network is terminated by at least one coil or box.

Fig. 7.1 shows the structure of a block with the LAD program. Located at the begin-
ning of the program is the block title, comprising the block heading and block com-
ment. Heading and comment are optional. These are followed by the first network
with its number, heading, and comment. Heading and comment are also optional
for the networks. The first network shows a current path as an example with series
and parallel connection of contacts, a memory function within the current path,
and two coils as termination of the current path. The second network shows the
processing of boxes, which can be arranged in series or parallel. A block is not ter-
minated by a special network or function, you simply finish the program input.

The LAD editor establishes a network in accordance with the principle of the
“main current path”: this is the highest branch which commences directly on the
left-hand power rail and must be terminated by a coil or box. All LAD elements can
be positioned within it.

An LAD element must not be “short-circuited” by an “empty” parallel branch, and
“current” must not flow from right to left through a program element. A parallel
branch which does not end “open” must be closed for the branch on which it was
opened.

7 Ladder logic LAD

210

“Open” parallel branches can lead out from the main current path and need not
lead back to the main current path; these are known as “T branches”. There are cer-
tain limitations in the selection of the permissible program elements in the case of
these parallel branches which do not commence on the left-hand power rail.

Where additional rules apply to the arrangement of special LAD elements, these are
described in the corresponding sections.

Fig. 7.1 Structure of a block with LAD program

http://pnap.ir/siemens-s71200-price-list/

7.1 Introduction

211

7.1.2 Program elements of ladder logic

Fig. 7.2 shows which types of LAD elements exist: Contacts and coils for processing
binary signals, Q boxes for implementing memory, timer, and counter functions,
and EN/ENO boxes for “complex” functions which, for example, carry out calcula-
tions, manipulate strings, or convert numbers into text.

Most program elements must be provided with tags or operand addresses.
With contacts and coils, the tags are assigned by means of the program element.
If further tags are required for the function, these are present under the element.
In the case of the boxes, the tags are present at the box inputs and outputs.

It is best if you initially arrange all program elements in a current path and sub-
sequently label them.

Fig. 7.2 Overview of ladder logic program elements

The binary control function is implemented by AND, OR and exclusive
OR boxes. The box inputs scan the signal state of the binary tag.
There are also scans with special functions such as edge evaluation
(“fleeting contact”) or the comparison of two digital tags which delivers
a binary result.

The standard boxes save the binary result of the logic operation.
They can be positioned in the middle or at the end of a logic operation.
Assignments save the result of the logic operation in binary tags.
There are also boxes with special functions such as edge evaluation
(“pulse flag”) or the simultaneous control of several bits.

Boxes with a Q output are referred to as “Q boxes”. These can have
multiple inputs, as well as extra outputs in addition to the Q output.
Examples of these boxes are the memory functions and the timer and
counter functions.

Processing of these boxes can be enabled by means of the enabling
input EN. The enabling output ENO signals whether processing has been
completed without errors. The boxes can have multiple inputs and
outputs. Examples of these boxes are the math functions or the functions
for conversion of the data type of tags.

The block calls represent the change in processing to a different block.
The box represents the called block with its input and output parameters.
The block called with the box is processed; processing is subsequently
continued with the next function following the block call.

Function

Function

Function

Function

Block

Q

OUT

OUT1

ENO

OUT2

ENO

IN1

EN

EN

IN2

IN2

IN2

IN1

IN1

Data

Binary functions

Standard boxes

Boxes with Q output

Boxes with EN input and ENO output

Block calls

http://pnap.ir/siemens-s71200-price-list/

7 Ladder logic LAD

212

7.2 Programming with contacts

In the case of contacts you scan the binary tags, e. g. inputs, and link the scanned
signal states by arranging the contacts in series or parallel. You use an NO or NC
contact to define the influence of the scanned signal state on the logic operation.
Further functions for contacts are negation of the signal flow, edge evaluation for a
binary tag, validity checking of floating-point numbers, and the comparison func-
tion (Fig. 7.3).

7.2.1 NO and NC contacts

An NO or NC contact is used to scan the signal state of a binary tag. An NO contact
passes on the scanned signal state directly to the logic operation, an NC contact first
negates the signal state.

Normally open contact

If the signal state of a binary tag is scanned using an NO contact, the scanned state
directly influences the signal flow in the logic operation.

The example in Fig. 7.4 shows the sensor S1 on the left-hand side which is connect-
ed to input %I1.0 and is scanned by means of an NO contact. If the sensor S1 is open,
the input %I1.0 has the signal state “0” and and no current flows through the
NO contact. Contactor K1 controlled by output %Q4.0 does not pull up.

If sensor S1 is then activated, input %I1.0 has the signal state “1”. Current flows
from the left-hand power rail through the NO contact into the coil, and contactor K1
connected to output %Q4.0 pulls up.

Fig. 7.3 Overview of contacts available with LAD

Normally open
(NO) contact

NOT contact

Normally closed
(NC) contact

Scan for
“valid”

Comparison
function

Scan for
“invalid”

NOT

Floating-point tag Floating-point tag
OK NOT_OK

Binary tag Binary tag
P N

Edge trigger flag Edge trigger flag

Function
Data type

Digital tag 1

Digital tag 2

Contacts

Positive edge
of a binary tag

Binary tag Binary tag

Negative edge
of a binary tag

http://pnap.ir/siemens-s71200-price-list/

7.2 Programming with contacts

213

Normally closed contact

If the signal state of a binary tag is scanned using an NC contact, the contact passes
on the negated result of the scan to the signal flow in the logic operation.

In the example in Fig. 7.4 (right-hand side), current flows through the NC contact
if the scanned sensor S2 is not closed (input %I1.1 has the signal state “0”).
The current also flows into the coil and triggers the contactor K2 at output %Q4.1.

If sensor S2 is then activated, “1” is present at the input %I1.1 and the NC contact
opens. The current flow is interrupted, and contactor K2 drops out.

7.2.2 Consideration of sensor type in ladder logic

If you scan a sensor in your program, you must take into consideration whether it
is an NO or NC contact. Depending on the type of sensor, different signal states are
present at the corresponding input when the sensor is activated: “1” with an NO
contact and “0” with an NC contact. It is not possible for the CPU to determine
whether an NC or NO contact is connected to an input. It can only recognize the sig-
nal state “1” or “0”.

Fig. 7.4 Principle of operation of NO and NC contacts

S1 S2

C1 C2C1 C2

S1 S2

%I1.0 %I1. 1%Q4.0 %Q4.1%Q4.0 %Q4.1%I1. 0 %I1.1

“0”

“1”“1”

“1”“1”

“0”“0”

“0”

Principle of operation of a NC contact Principle of operation of a NO contact

Sensor
activated

Sensor
activated

http://pnap.ir/siemens-s71200-price-list/

7 Ladder logic LAD

214

If you write the program to obtain “1” when a sensor is activated in order to link it
further, you must scan the input in different ways depending on the type of sensor.
The contact types NO contact and NC contact are available for this purpose.
An NO contact delivers “1” if the scanned input is also “1”. An NC contact delivers
“1” if the scanned input is “0”. In this manner you can also directly scan inputs
which are to execute activities when the signal state is “0” (“zero-active”) and con-
nect the result of the scan further.

Fig. 7.5 Consideration of the type of sensor

Neither sensor is activated

Neither sensor is activated

Both sensors are activated

Both sensors are activated

The contactor
pulls up

The contactor
pulls up

S3

S5

S3

S5

S4

S6

S4

S6

C3

C4

C3

C4

%I1.2

%I1.4

%I1.2

%I1.4

%I1.3

%I1.5

%I1.3

%I1.5

%Q4.2

%Q4.3

%Q4.2

%Q4.3

“0”

“0”

“0” “1”

“1”

“1”

“1”“1”

“1”

“1”

“0”

“0”

Case 1: Both sensors are NO contacts

Case 2: The sensors are one NO contact and one NC contact

http://pnap.ir/siemens-s71200-price-list/

7.2 Programming with contacts

215

The example in Fig. 7.5 on page 214 shows the programming dependent on the
type of sensor. In the first case, two NO contacts are connected to the programmable
controller, in the second case one NO contact and one NC contact. In both cases, a
contactor connected to an output is to pull up when both sensors are activated.
When an NO contactor is activated, the signal state at the input is “1” and is scanned
by an NO contact so that current can flow when the sensor is activated. If both NO
contacts are activated, current flows through the current path into the coil, and the
contactor pulls up.

When activating an NC contact, the signal state at the input is “0”. To allow current
to flow following activation, an NC contact must be used for the scan. Therefore in
the second case one NO contact and one NC contact must be connected in series in
order for the contactor to pull up when both sensors are activated.

7.2.3 Series connection of contacts

With a series connection, two or more contacts are positioned one behind the other.
Current flows through a series connection when all contacts are closed.

Fig. 7.6 shows an example of a series connection: If in the upper current path all
tags have signal state “1”, all NO contacts are closed and the tag “Coil 1” is set to sig-
nal state “1”. In all other cases, “Coil 1” is reset to signal state “0”.

In the current path underneath this, the tag “Coil 2” is set to signal state “1” if
“Contact 4” has the signal state “1” and “Contact 5” the signal state “0”.

7.2.4 Parallel connection of contacts

A parallel connection means that two or more contacts are positioned underneath
each other. Current flows through a parallel connection when one of the contacts is
closed.

Fig. 7.7 shows an example of a parallel connection: if none of the tags has the signal
state “1” in the top current path, all NO contacts are open and the tag “Coil 3” has
the signal state “0”. In all other cases, “Coil 3” is set to signal state “1”.

In the current path underneath this, the tag “Coil 4” has the signal state “0” if the
tag “Contact 4” has the signal state “0” and the tag “Contact 5” the signal state “1”.

Fig. 7.6 Series connection of contacts

7 Ladder logic LAD

216

With LAD you can also program a branch in the middle of a current path, such as
the top current path in . The result is a parallel branch which does not commence
on the left-hand power rail. A parallel connection with an “open” termination is re-
ferred to as a “T branch” (see Chapter 7.2.6 “T branch, open parallel branch in the
ladder logic” on page 217). In both cases, use of LAD program elements is limited;
reference to this is made in the corresponding sections.

7.2.5 Mixed series and parallel connections

You can combine series and parallel connections, e.g. arrange several series con-
nections in parallel or several parallel connections in series. You can also connect
series or parallel connections together even if they have a complex structure.

Parallel connection of series connections

Instead of contacts you can also arrange series connections underneath each other.
Fig. 7.8 shows two examples. The tag “Coil 5” is set to signal state “1” if “Contact 1”

Fig. 7.7 Parallel connection of contacts

Fig. 7.8 Parallel connection of series connections

7.2 Programming with contacts

217

and “Contact 2” or if “Contact 3” and “Contact 4” have the signal state “1”. “Coil 6”
is set to signal state “1” if “Contact 5” or “Contact 6” and “Contact 7” or “Contact 0”
have the signal state “1”.

Series connection of parallel connections

Instead of contacts you can also arrange parallel connections one behind the other.
Fig. 7.9 shows two examples. The tag “Coil 7” has signal state “1” if either “Contact
1” or “Contact 3” and either “Contact 2” or “Contact 4” have the signal state “1”. So
that the tag “Coil 0” can have the signal state “1”, “Contact 7” or “Contact 5” and
“Contact 6” must have signal state “1” in addition to “Contact 0”.

7.2.6 T branch, open parallel branch in the ladder logic

You can “divide” a current path so that it has two different terminations. If this is
not simply a parallel connection of coils or boxes, but a case of both branches hav-

Fig. 7.9 Series connection of parallel connections

Fig. 7.10 T branch, open parallel branch

7 Ladder logic LAD

218

ing different logic operations, this is referred to as a “T branch” or an “open” paral-
lel branch.

Fig. 7.10 shows a simple T branch in the top current path. “Coil 8” can be switched
on by the tag “Contact 2”, and “Coil 9” by the tag “Contact 3”. A prerequisite in both
cases is that the tag “Contact 1” has the signal state “1”.

Series and parallel contact connections can be programmed following a T branch.
A further T branch can also be opened within a T branch. However, you cannot enter
logic operations which lead from the left-hand power rail to a T branch.

7.2.7 Negating result of logic operation in the ladder logic

The NOT contact negates the result of the logic operation (the “current flow”). You
can use this contact to negate the result of a series connection, for example. In
Fig. 7.11, “Coil 13” only has a signal state “0” if both “Contact 1” and “Contact 2”
have the signal state “1”.

In the bottom current path, a NOT contact is positioned following a parallel connec-
tion. In this case, “Coil 14” is only set to signal state “1” if both tags “Contact 3” and
“Contact 4” have the signal state “0”.

You can position the NOT contact like a standard contact in a branch which com-
mences on the left-hand power rail. Positioning following a T branch is also permis-
sible. Positioning of the NOT contact is not permissible in a parallel branch which
commences in the middle of the current path. The NOT contact can also be used to
negate the result of the logic operation (the “current flow”) at box inputs and
outputs.

7.2.8 Edge evaluation of a binary tag in ladder logic

The edge contact has the signal state “1” for one processing cycle if the signal state
of the binary tags positioned above it changes from “0” to “1” (P contact, rising
edge) or from “1” to “0” (N contact, falling edge). It responds like a “fleeting con-
tact”. This “pulse” is linked to the result of the logic operation present prior to the
contact.

Fig. 7.11 Example of NOT contact

7.2 Programming with contacts

219

The edge trigger flag is present underneath the edge contact. This is a flag or data
bit which saves the signal state of the binary tag. The signal edge is recognized by
comparing the signal states of binary tags and edge trigger flags (see also Chapter).

The binary tag “Memory 1” in Fig. 7.12 is set at the moment when one of the tags
“Contact 1” or “Contact 2” has the signal state “1”. A prerequisite is that the tag
“Contact 4” also has the signal state “1” at that moment. “Memory 1” is reset at the
moment when the series connection of “Contact 5” and “Contact 6” no longer has
“current”.

The signals for setting and resetting the tag “Memory 1” are only present for one
program cycle.

7.2.9 OK contact

The OK contact checks a floating-point tag for validity, i.e. whether the range limits
for this data type have been observed. The contact is available in two versions:

b The OK contact is closed when the tag is valid.

b The NOT_OK contact is closed when the tag is outside the permissible range.

The OK contact is programmed like a standard contact.

Fig. 7.13 shows a series connection of three contacts in the top current path. If all
contacts are closed, i.e. if the tags “Contact 1” and “Contact 2” have the signal
state “1” and if the floating-point tag “REAL-Var 1” is within the valid range, “Coil 1”
is set to signal state “1”.

The tag “Coil 2” is set to signal state “1” if one of the tags “Contact 3” or “Contact 4”
has the signal state “1” and if the floating-point tag “REAL-Var 2” is outside the per-
missible range.

7.2.10 Comparison contacts

A comparison function is shown in the ladder diagram as a “large” contact. It com-
pares two digital tags. A comparison which is correct is equivalent to a closed con-
tact (“current” is flowing through the comparison contact). The contact is open if
the comparison is incorrect.

Fig. 7.12 Contacts for edge evaluation

7 Ladder logic LAD

220

Comparison functions are available for equal to, not equal to, greater than, greater
than or equal to, less than, and less than or equal to. The comparison is carried out
in accordance with the data type of the digital tags involved (for description, see
Chapter 11.1 “Transfer functions” on page 356).

The comparison contact can be programmed wherever a standard contact can also
be positioned. If comparison contacts are connected in series, both comparisons
must be fulfilled so that current flows in the current path. If comparison contacts
are connected in parallel, it is sufficient for one of the comparisons to be fulfilled so
that current flows in the parallel connection.

The tag “Coil 3” in Fig. 7.14 is set to signal state “1” if the floating-point tags
“REAL-Var 1” and “REAL-Var 2” have the same numerical value. “Coil 4” is set to “1”
if the value of “REAL-Var 1” is greater than 125.75 or if the value of “REAL-Var 2” is
less than 12.5·103 and if, in both cases, the values of the tags “INT-Var 1” and “INT-
Var 2” are not the same.

In addition there is the range comparison which is represented as a box. The box is
positioned like a standard contact in the current path, with the input and output
unnamed.

Fig. 7.13 OK and NOT_OK contacts

Fig. 7.14 Comparison of contacts

7.3 Programming with coils

221

7.3 Programming with coils

Coils control binary tags such as outputs or bit memories. A simple coil sets the bi-
nary tag when current flows into the coil, and resets it when current no longer
flows. The reverse is true for a negated coil.

There are coils with additional names and special functionalities, such as the set
and reset coils or the coils for pulse generation during evaluation of signal edges.
Coils can also be used to set and reset bit fields, start and reset timer functions, exe-
cute jumps in the program, and to terminate blocks (Fig. 7.15). The jump functions
and the block end function are described in Chapter 7.6 “Functions for program
flow control (LAD)” on page 241.

Fig. 7.15 Overview of coils available with LAD

Negated coil

Reset coil

Binary tag

Binary tag

Binary tag

Binary tag

Simple coil

Set coil

Jump with “1”

Conditional
block end

Start time

Reset time
Specify
duration

FKT: TP Pulse time
TON ON delay
TOF OFF delay
TONR Accumulate time

Jump with “0”
Jump destination

Binary tag

Jump destination
JMP

RET

JMPN

SET_BF

FKT

RT

RESET_BF

PT

Pulse on
positive edge

Pulse on
negative edge

Binary tag Binary tag

S

P

R

N
Edge trigger flag Edge trigger flag

Binary tag

Timer function

Timer function

Binary tag

Timer function

Number

Duration

Number

Duration

Coils

Multiple setting Multiple resetting

http://pnap.ir/siemens-s71200-price-list/

7 Ladder logic LAD

222

7.3.1 Simple and negated coils

A simple coil directly assigns the current flow to the tag present on the coil: the tag
is set when current flows into the coil, and is reset when current no longer flows.
The negated coil negates the current flow in advance: the tag is set when no current
flows into the coil, and is reset when current flows.

Fig. 7.16 shows the possible arrangements for simple and negated coils. The tags
“Coil 1” and “Coil 2”, whose coils are connected in parallel in the first current path,
react in the same manner: if “Contact 1” and “Contact 2” have the signal state “1”,
the tags on the coils are set to “1”. In the second current path, the tag “Coil 3” for
the negated coil has the signal state “0” if current flows through the series connec-
tion.

Coils can also be positioned within a current path: “Coil 4” is set if “Contact 5” and
“Contact 6” have the signal state “1”. If “Contact 7” is set to signal state “1” in addi-
tion, “Coil 5” is also set to “1”.

The current flow is not influenced by the coil, as is shown by the example in the cur-
rent path underneath: if the tags “Contact 5”, “Contact 6” and “Contact 7” have the
signal state “1”, the tag “Coil 6” (negated coil) has the signal state “0” and the tag
“Coil 7” (simple coil) the signal state “1”.

The coils can be positioned following a T branch or directly on the left-hand power
rail. Positioning in a parallel branch which does not commence on the left-hand
power rail is not permissible (because of “jumpering” by contacts).

Fig. 7.16 Simple and negated coils

7.3 Programming with coils

223

7.3.2 Set and reset coil

If current flows into the set coil, the binary tag present above the coil is set to the
signal state “1”. If current flows into the reset coil, the tag present above the coil is
reset to the signal state “0”. If no current flows into the set or reset coil, the binary
tag remains uninfluenced.

In Fig. 7.17, “Contact 1” with a signal state “1” sets the tag “Coil 8”. “Contact 2” re-
sets the tag “Coil 8” by means of a positive edge.

Set and reset coils can be connected in series or parallel, also in combination with
simple and negated coils. They can also be positioned within a current path, on the
left-hand power rail, or following a T branch. Positioning in a parallel branch which
does not commence on the left-hand power rail is not permissible.

7.3.3 Retentive response due to latching

The memory function in a circuit diagram is usually realized through latching of
the output to be triggered. This realization can also be integrated into the ladder
diagram. However, compared to the memory box, it has the disadvantage that the
memory function is not recognized immediately. The latching principle is simple:
the binary tag triggered by the coil is scanned, and this scan (the “coil contact”) is
connected in parallel to the set condition.

Fig. 7.17 Set and reset coil

Fig. 7.18 Retentive response due to latching

7 Ladder logic LAD

224

Fig. 7.18 shows both types of memory function through latching, namely set dom-
inant and reset dominant. If “Contact 3” closes, “Coil 9” pulls up and closes the con-
tact parallel to “Contact 3”. If “Contact 3” then opens again, “Coil 9” remains trig-
gered. “Coil 9” drops out if “Contact 4” opens. If signal state “1” is present at both
“Contact 3” and “Contact 4”, no current flows into the coil (reset dominant). This sit-
uation looks different in the bottom current path: if signal state “1” is present at
both “Contact 5” and “Contact 6”, current flows into the coil (set dominant).

7.3.4 Edge evaluation with pulse output in the ladder logic

The P and N coils are available for edge evaluation with coils. The binary tag present
above the P coil is set for the duration of one program cycle if the signal state chang-
es from “0” to “1” prior to the P coil (rising edge). With the N coil, the binary tag
present above the coil is set for the duration of one program cycle in the case of a
falling edge.

The binary tag present above the coil is referred to as a “pulse bit memory”. Suitable
for pulse bit memories are operand types which are not connected “outside” to
modules, for example tags from the bit memory or data areas. The edge trigger flag
is present under the coil, and must be a different tag for each edge evaluation (see
Chapter 10.3 “Edge evaluation” on page 338).

In Fig. 7.19, the tag “Coil 1” has the signal state “1” for the duration of one program
cycle if both tags “Contact 1” and “Contact 2” have the signal state “1”. “Coil 2” has
the signal state “1” for the duration of one program cycle if both tags “Contact 3”
and “Contact 4” have the signal state “0”.

Edge coils can be positioned within a current path or terminate a current path. Edge
coils can also be programmed following a T branch. A direct connection to the left-
hand power rail is not advisable.

If an edge coil is followed by further program elements, for example if the edge coil
has been positioned within a current path, the signal state at the input of the edge
coil is passed on directly to the coil output.

Fig. 7.19 Edge evaluation with coils (“pulse bit memories”)

7.3 Programming with coils

225

7.3.5 Multiple setting and resetting (filling of bit field) in the ladder logic

If the result of the logic operation is “1”, the SET_BF coil sets the bits of a bit field to
signal state “1”. The bit field is defined by the start tag present above the coil and
the number of bits under the coil. If the result of the logic operation is “1”, the
RESET_BF coil resets the bits in the bit field. There is no response if the result of the
logic operation is “0”.

In the example in Fig. 7.20, the bit field for the SET_BF coil is defined by the start
tag “Bitfield0” which is followed by seven bits (thus a total of eight bits). The bit field
for the RESET_BF coil is in the data block “Data180”, commences with the field
(binary) component Bitfield[1], and ends after 15 subsequent bits.

SET_BF and RESET_BF terminate the current path. If the coils are positioned directly
on the left-hand power rail, the function is always executed.

7.3.6 Starting IEC timer functions in the ladder logic with coils

You can use the timer functions to implement timing processes in the
program such as waiting and monitoring times, measurement of a time interval, or
the generation of pulses. An IEC timer function can be started with two different
program elements: with a coil or with a Q box (see Chapter 7.4.5 “Controlling IEC
timer functions in the ladder logic with Q boxes” on page 230). Both variants are
equally useful. A detailed description of the timer functions is provided in Chapter
10.4 “Time functions” on page 344.

A timer function can be started with one of the four behavior patterns TP, TON, TOF,
and TONR. A timer function requires internal data for each application. You can
specify where this data is to be saved when programming: For the Single instance
entry in its own data block with the data type IEC_TIMER and for the Multi-instance
entry in the instance data block of the calling function block with a data type that
depends on the behavior of the timer function (TP_TIME, TON_TIME, TOF_TIME,
TONR_TIME). You address a timer function with the name of the instance data –
data block or local data.

Fig. 7.20 Filling of bit field with SET_BF and RESET_BF

7 Ladder logic LAD

226

The coil to start a timer function requires a preceding logic operation. It can only be
placed at the end of a current path. Under the coil is the duration with which the
timer function is started.

A timer function is reset using the RT coil. The RT coil can be programmed in the
middle of a current path or as its termination.

The PT coil sets the duration of a timer function. Each processing with signal state
“1” overwrites the duration in the instance data with the value given under the coil.

Fig. 7.21 shows the coils used in connection with IEC timer functions. In the first
current path, the timer function in the local data with the name #Timer is started as
ON delay with the value #Duration. The status of the timer function can be scanned
with the structure component Q. The example shows starting the timer function,
resetting the timer function, and setting the duration with a rising edge.

7.4 Programming with Q boxes in the ladder logic

Q boxes have a binary output named “Q” which can be linked further. Q boxes are
used to represent memory functions, edge evaluations, and timer and counter
functions (Fig. 7.22).

With Q boxes, the first binary input (and in certain cases the associated parameter)
must be connected, connection of the other inputs and outputs is optional. The
binary inputs of Q boxes cannot be directly connected to the left-hand power rail.

7.4.1 Arrangement of Q boxes in the ladder logic

When using Q boxes as program elements, you can:

b Program one single box per network, either within the current path or
as its termination

Fig. 7.21 Processing a timer function with coils

7.4 Programming with Q boxes in the ladder logic

227

b Arrange boxes in series by connecting the Q output of one box to
a binary input of the following box, and

b Position boxes following T branches and in branches which commence
on the left-hand power rail

The circuits shown in Fig. 7.23 for the positioning of Q boxes use the memory box
with two binary inputs as an example. This enables the possible positioning of all Q
boxes to be shown.

7.4.2 Memory boxes in the ladder logic

There are two versions of the memory function as box: as SR box (reset dominant)
and as RS box (set dominant). In addition to the difference in the function name, the
two boxes also differ in the positioning of the set and reset inputs.

The binary tag named above the memory box is set when the set input has signal
state “1” and the reset input signal state “0”. The binary tag is reset when “1” is
present at the reset input and “0” at the set input. Signal state “0” at both inputs has
no influence on memory functions. If signal state “1” is present simultaneously at
both inputs, the two memory functions respond differently: the SR memory func-
tion is reset, the RS memory function is set.

If both tags “Contact 1” and “Contact 2” in Fig. 7.24 have the same signal state “1”,
“Memory 1” is reset (box input R1 is dominant). If both “Contact 3” and “Contact 4”
have the same signal state “1”, “Memory 2” is set (box input S1 is dominant).

Fig. 7.22 Overview of Q boxes available with LAD

RS memory boxSR memory box

Evaluation with
falling edge

Evaluation with
rising edge

Timer functions TP, TON, TOF and TONR
Counter functions CTU, CTD, CTUD

Represented as local instance or
with own data block

Binary variable Binary variable

SR RS

S R

R1 S1

Q Q

Edge trigger flag Edge trigger flag

P_TRIG N_TRIG

CLK CLKQ Q

FunctionFunction

#Instance

ININ

...

...

...

...

QQ

...

...

...

...

“Instance”

Boxes with Q outputs

http://pnap.ir/siemens-s71200-price-list/

7 Ladder logic LAD

228

Fig. 7.23 Positioning of Q boxes using example of SR memory function

Fig. 7.24 Memory boxes SR and RS

http://pnap.ir/siemens-s71200-price-list/

7.4 Programming with Q boxes in the ladder logic

229

7.4.3 Edge evaluation of current flow

The edge evaluation with Q boxes registers a change in the current flow prior to the
box. If the signal state changes from “0” to “1” (rising edge) at the CLK input of the
P_TRIG box, signal state “1” is present at the Q output for the duration of one pro-
gram cycle. If the result of the logic operation changes from “1” to “0” (falling edge)
at the CLK input of the N_TRIG box, the Q output is activated for the duration of one
program cycle.

In Fig. 7.25, the tag “Memory 3” is set at the moment when both tags “Contact 5”
and “Contact 6” have the signal state “1”. “Memory 3” is reset at the moment when
both tags “Contact 7” and “Contact 0” have the signal state “1”.

The edge boxes may only be positioned within a current path.

7.4.4 Example of binary scaler in the ladder logic

A binary scaler has one input and one
output. If the signal at the input of the
binary scaler changes its state, e.g. from
“0” to “1”, the output also changes its sig-
nal state. This (new) signal state is then
retained until the next change, which is
positive in our example. Only then does the signal state of the output change again.
Half of the input frequency is then present at the binary scaler's output.

There are various methods for solving this task, two of which are shown below.

The first solution uses memory functions (Fig. 7.26). If the tag “Input 1” has the
signal state “1”, the tag “Output 1” is then set (“Memory 1” is still reset). If the sig-
nal state at “Input 1” changes to “0”, “Memory 1” is also set (“Output 1” is then “1”).
If “Input 1” is “1” the next time around, “Output 1” is reset again (“Memory 1” is
now “1”). If “Input 1” is “0” again, “Memory 1” is reset (since “Output 1” is now also
reset). The “basic state” has now been reached again following two input pulses
and one output pulse.

Fig. 7.25 Example of Q boxes for edge evaluation

Input

Output

7 Ladder logic LAD

230

The second solution uses the latching principle common to circuit diagrams
(Network 4). The operating principle is the same as with the first solution, but the
reset condition – as usual with latching – is “zero-active”.

7.4.5 Controlling IEC timer functions in the ladder logic with Q boxes

You can use the timer functions to implement timing processes in the
program such as waiting and monitoring times, measurement of a time interval, or
the generation of pulses. An IEC timer function can be started with two different
program elements: a coil or a Q box (see Chapter 7.3.6 “Starting IEC timer functions
in the ladder logic with coils” on page 225). Both variants are equally useful. A de-
tailed description of the timer functions is provided in Chapter 10.4 “Time func-
tions” on page 344.

A timer function can be started with one of the four behavior patterns TP, TON, TOF,
and TONR. A timer function requires internal data for each application. You can
specify where this data is to be saved when programming: For the Single instance
entry in its own data block with the data type IEC_TIMER and for the Multi-instance
entry in the instance data block of the calling function block with a data type that
depends on the behavior of the timer function (TP_TIME, TON_TIME, TOF_TIME,

Fig. 7.26 Examples of binary scalers in ladder logic

7.4 Programming with Q boxes in the ladder logic

231

TONR_TIME). You address a timer function with the name of the instance data –
data block or local data.

The top timer function “Timer 1” in Fig. 7.27 saves its data as a local instance with
the name #“Timer 1” in the calling function block. This function is started with
“Contact 1” and “Duration 1”. The tag “Coil 1” has the signal state “1” for as long as
defined by the tag “Duration 1”.

The bottom timer function “Timer 2” saves its data in a separate data block
“Timer 2”. This function is started with “Contact 2” and “Duration 2”. After expiry
of the duration, the tag “Coil 2” has signal state “1”.

The name of the local instance (#“Timer 1”) and the name of the data block
(“Timer 2”) address the respective timer functions. Component Q of the data
structure supplies the status of the timer function.

7.4.6 Controlling IEC counter functions in the ladder logic with Q boxes

You can use the IEC counter functions to execute counting tasks directly using the
control processor. The counter functions can count up and down; the numerical
range depends on the data type of the preset value. The data types USINT, UINT,
UDINT, SINT, INT and DINT are available.

The counting frequency of the counter functions depends on the execution time of
the user program. In order to count, the CPU must recognize a change in the signal
state of the input pulse, i.e. the input pulse and the pause must be present for at
least one program cycle. The longer the program execution time, the lower the
counting frequency. A detailed description of the counter functions is provided in
Chapter 10.5 “Counter functions” on page 349.

Fig. 7.27 Examples of timer functions

7 Ladder logic LAD

232

A counter function can be controlled with one of the three behavior patterns CTU,
CTD, and CTUD. A counter function requires internal data for each application. You
can specify where this data is to be saved when programming: by specifying Single
instance for storage in a separate data block, and by specifying Multi-instance for
storage in the instance data block of the calling function block.

The data type of a counter function is based on the data type of the count value. If,
for example, an up-counter (CTU) with a DINT count value is programmed as a sin-
gle instance, the data type IEC_DCOUNTER is taken as a basis for the data block (see
Chapter 4.8.2 “IEC_COUNTER system data type” on page 112); as a local instance,
the counter function has the data type CTU_DINT (see Chapter 4.6.2 “Parameter
types for IEC counter functions” on page 108). You address the counter function
with the name of the instance data – data block or local data.

The top counter function “Counter 1” in Fig. 7.28 saves its data as a local instance
in the calling function block. The current count value “Count value 1” is set by
“Contact 4” to zero. “Contact 3” increments the current count value by one unit with
each positive edge. If the count value reaches the default value “Preset value 1” and
then exceeds it, the tag “Coil 3” at output Q is set.

The second counter in the example is an up/down counter. “Contact 7” sets the cur-
rent count value to zero, “Contact 8” loads the default value “Preset value 2” as the
current count value. “Contact 5” increments the count value by one unit with each
positive signal change, “Contact 6” decrements the count value by one unit with
each positive signal change.

Fig. 7.28 Examples of counter functions

7.5 Programming with EN/ENO boxes in the ladder logic

233

The QU output has the signal state “1” if the actual count value at the CV output is
equal to or greater than the default value at the PV input. The QD output has the sig-
nal state “1” if the actual count value is zero or less than zero.

The upper QU output can be further connected directly. In the example, it is used to
control the tag “Coil 4”. The QD output cannot be supplied, but can be scanned indi-
rectly via the corresponding component QD of the counter structure. (For the QU
output, this would be the component QU.)

The name of the local instance (#“Counter 1”) and the name of the data block
(“Counter 2”) address the respective counter function. In the example, “Counter 2”
has its own data block, and the QD output is scanned as usual in LAD with a contact
named “Counter 2”.QD. The result of the scan can be connected further,
e.g. assigned directly to a coil.

7.5 Programming with EN/ENO boxes in the ladder logic

EN/ENO boxes have an enabling input EN and an enabling output ENO. The enabling
input can be used to suppress processing of the box. If an error occurs while the box
is being processed, this is displayed at the enabling output.

Fig. 7.29 Overview of boxes with enable input EN and enable output ENO

MOVE

SHR

CONV

T_CONV S_CONV

EXPT

CONCAT

ADD

XOR

EN

EN

EN

EN EN

EN

EN

EN

EN

IN

IN

N

IN

IN IN

IN1

IN1

IN2

IN2

IN1

IN1

IN2

IN2

ENO

ENO

ENO

ENO ENO

ENO

ENO

ENO

ENO

OUT1

OUT

OUT2

OUT

OUT OUT

OUT

OUT

OUT

OUT

Transfer
functions
e.g. transfer

Shift functions
e.g. shift to right

Conversion
functions for
time values

Conversion
functions
for strings

Logic functions
e.g. digital logic
operation XOR

Mathematical
functions
e.g. exponentiate

String functions
e.g. concatenate

Boxes with EN input and ENO output

Arithmetic
functions
e.g. add

Conversion
functions for
numerical values

http://pnap.ir/siemens-s71200-price-list/

7 Ladder logic LAD

234

A detailed description of the functions with EN/ENO boxes can be found in the cor-
responding sections. Programming of the EN/ENO boxes in the ladder logic repre-
sentation is of prime importance here. Fig. 7.29 provides an overview of the func-
tions implemented with EN/ENO boxes.

The parameters of the EN/ENO boxes must all be connected. The enabling input EN
and the enabling output ENO are not parameters of the box function. They are used
for processing boxes, and are added by the program editor to the box function.

A detailed description of EN and ENO and how one can use the EN/ENO mechanism
with self-created blocks can be found in Chapter 12.4.1 “EN/ENO mechanism with
LAD and FBD” on page 418. The block calls in the ladder diagram, which are also
shown as EN/ENO boxes, are described in Chapter 7.6.5 “Block call functions in the
ladder logic” on page 245.

7.5.1 Positioning of EN/ENO boxes in the ladder logic

Fig. 7.30 uses the MOVE function to show the positioning of EN/ENO boxes in a cur-
rent path. An EN/ENO box can be positioned on its own in a network, with or without
connection of the EN input or the ENO output. The ENO output can be connected to
the EN input of the following box. By means of a contact at the beginning of this

Fig. 7.30 Positioning of EN/ENO boxes using example of MOVE box

http://pnap.ir/siemens-s71200-price-list/

7.5 Programming with EN/ENO boxes in the ladder logic

235

“main current path” it is possible to switch processing of the entire current path on
and off. The signal state of the ENO output of the last box indicates by means of a
“1” that the complete sequence has been processed without errors.

The ENO output of a box can be connected in parallel with the ENO output of a dif-
ferent box if the boxes are present in separate current paths which commence on
the left-hand power rail. “Current” then flows in the subsequent path if one of the
two boxes has completed the processing without errors.

If an EN/ENO box is positioned in a T branch, its ENO output can no longer be re-
turned to the path at which the T branch commences.

7.5.2 Transfer functions in the ladder logic

Boxes with the following transfer functions are available in the programming
language LAD:

b Copy an operand or tag (MOVE)

b Read (FieldRead) and write (FieldWrite) a field component
with variable index

b Copy a data area (MOVE_BLK) and copy a data area without interruption
(UMOVE_BLK)

b Fill a data area (FILL_BLK) and fill a data area without interruption
(UFILL_BLK)

b Exchange the bytes within a tag (SWAP)

A detailed description of the transfer functions is provided in Chapter 11.1 “Trans-
fer functions” on page 356.

Fig. 7.31 shows an example of the programming of transfer functions. If the tag
“Contact 1” changes the signal state from “0” to “1”, the MOVE and FILL_BLK boxes
will be executed.

The MOVE box copies the content of tag #Int1 to tag #Field1[1]. #Field1[1] is a com-
ponent of the tag #Field1 with the same data type as the tag #Int1.

Fig. 7.31 Example of the transfer functions in the ladder logic

http://pnap.ir/siemens-s71200-price-list/

7 Ladder logic LAD

236

The MOVE box can be provided with further outputs: select the MOVE box and then
the Insert output command from the shortcut menu. In the example, the content of
#Int1 is also transferred to the tag #Field1[9] and to the component #Struc-
ture1.Int1.

The FILL_BLK box in the example transfers the value 1234.567 to four successive
components of the field tag #Field3, starting with #Field3[1]. #Field3 consists of
components of data type REAL.

7.5.3 Arithmetic functions for numerical values in the ladder logic

Boxes with the following arithmetic functions for numerical values are available in
the programming language LAD:

b Add (ADD), subtract (SUB), multiply (MUL) and divide (DIV) two numerical
values

b Divide with remainder as result (MOD)

b Form absolute value (ABS), negation (NEG, multiplication by –1), decrement
(DEC, reduce numerical value by 1) and increment (INC, increase numerical
value by 1)

A detailed description of these arithmetic functions is provided in Chapter 11.3
“Arithmetic functions for numerical values” on page 366.

Fig. 7.32 shows an example of the arithmetic functions with numerical values. Two
tags of data type INT are added, and the intermediate result is saved in the tempo-
rary tag #t_Int1. This intermediate result is multiplied by –1 and output to tag
#Int3. The absolute value of tag #Int1 is generated; this value is divided by 3 and the
remainder of the division written to tag #Int4.

7.5.4 Arithmetic functions for time values in the ladder logic

In the LAD programming language, durations (time spans, data type TIME) and
points in time (date and time, data type DTL) can be interlinked. Boxes with the
following arithmetic functions are available for this:

Fig. 7.32 Example of arithmetic functions for numerical values in the ladder logic

7.5 Programming with EN/ENO boxes in the ladder logic

237

b Add two durations, or add one duration to a point in time (T_ADD)

b Subtract two durations, or subtract one duration from a point in time (T_SUB)

b Generate the difference between two points in time (T_DIFF)

A detailed description of these arithmetic functions is provided in Chapter 11.4
“Arithmetic functions for time values” on page 369.

Fig. 7.33 shows an example of arithmetic functions with time values. The difference
between the tags #Date1 and #Date2 is generated. The result is a duration in TIME
format. Eight hours are added to this duration, and the result output to tag
#Duration2.

7.5.5 Math functions in the ladder logic

Boxes with the following math functions are available in the programming lan-
guage LAD:

b Trigonometric functions: sine (SIN), cosine (COS), tangent (TAN)

b Arc functions: arcsine (ASIN), arccosine (ACOS), arctangent (ATAN)

b Form square (SQR) and square root (SQRT)

b Exponential function to base e (EXP) and to any base (EXPT)

b Natural logarithm (LN)

b Extract decimal places (FRAC)

A detailed description of these math functions is provided in Chapter 11.5 “Mathe-
matical functions” on page 372.

Fig. 7.34 shows an example of the math functions.

The tag #c is calculated according to the equation. The square of #a
is formed first. When inputting tag names – which can also be keywords (in the
input, “a” can also stand for “output”) or which can have the same name both locally

Fig. 7.33 Example of arithmetic functions for time values in the ladder logic

c a2 b2+=

7 Ladder logic LAD

238

and globally – the tag must be labeled accordingly: for a local tag with a preceding
number sign (#), for a global tag with the name in quotation marks, and for an oper-
and with a preceding percent sign (%).

In the example, the squares of #a and #b are stored temporarily and added. #t_Real1
is used again for the buffer. The result of the square root extraction is saved in the
tag #c.

7.5.6 Conversion functions in the ladder logic

Boxes with the following conversion functions are available in the programming
language LAD:

b CONV (conversion of BYTE, WORD, DWORD, SINT, INT, DINT, USINT,
UINT, UDINT, REAL, LREAL, BCD16, BCD32)

b ROUND, FLOOR, CEIL, TRUNC (conversion of REAL, LREAL into SINT, INT,
DINT, USINT, UINT, UDINT, REAL, LREAL)

b SCALE_X, NORM_X (scaling and standardization)

b T_CONV (conversion of TIME into DINT and vice versa)

b S_CONV, STRG_VAL, VAL_STRG (conversion of SINT, INT, DINT, USINT,
UINT, UDINT, REAL into STRING and vice versa)

A detailed description of the conversion functions is provided in Chapter 11.6 “Con-
version functions (Conversion of data type)” on page 376.

Fig. 7.35 shows an example of the conversion functions.

The conversion function CONV is used to convert a 7-digit BCD number into a DINT
format number and subsequently into REAL format (tag #t_Real2). The value of
#t_Real2 is divided by 107 and converted into a fixed-point number between the lim-
its of –150 and +250.

Fig. 7.34 Example of math functions in the ladder logic

7.5 Programming with EN/ENO boxes in the ladder logic

239

7.5.7 Shift functions in the ladder logic

Boxes with the following shift functions are available in the programming lan-
guage LAD:

b Shift to right (SHR) and left (SHL)

b Rotate to right (ROR) and left (ROL)

A detailed description of the shift functions is provided in Chapter 11.7 “Shift func-
tions” on page 389.

Fig. 7.36 shows an example of the shift functions. The content of tag #Int2 is shifted
three places to the right and output to tag #Int3. Shifting of fixed-point numbers
one place to the right is equivalent to a division by two. In the example, tag #Int2 is
divided by eight (23) and the rounded-off result output to tag #Int3.

Fig. 7.35 Example of the conversion functions in the ladder logic

Fig. 7.36 Example of the shift functions in the ladder logic

7 Ladder logic LAD

240

7.5.8 Logic functions in the ladder logic

Boxes with the following logic functions are available in the programming lan-
guage LAD:

b Digital logic operations AND, OR and XOR

b Invert (INV)

b Code bit (DECO) and set bit number (ENCO)

b Selection functions (SEL, MUX), minimum and maximum selection
(MIN, MAX), limiter (LIMIT)

A detailed description of the logic functions is provided in Chapter 11.8 “Logic
functions” on page 392.

Fig. 7.37 shows an example of the logic functions.

The MUX function is used to select the components whose number is present in the
tag #Selection from the first four components of field tag #Field4. For example,
if the tag #Selection has a value of 3, the tag #Field4[3] will be selected.

If the value of #Selection is not between 1 and 4, the value of the tag #Real4 is used
as a substitute. The result of the selection is limited to the range between –375 and
+1200 and output to #Real1.

The MUX box has been extended in the example by two inputs: select the box when
programming and then the Insert input command from the shortcut menu.

7.5.9 Functions for strings in the ladder logic

Boxes with the following functions for strings are available in the programming
language LAD:

b LEN Outputs the length of a string
b CONCAT Combines two strings together
b LEFT Outputs the left part of a string

Fig. 7.37 Example of the logic functions in the ladder logic

http://pnap.ir/siemens-s71200-price-list/

7.6 Functions for program flow control (LAD)

241

b RIGHT Outputs the right part of a string

b MID Outputs the middle part of a string

b DELETE Deletes part of a string

b INSERT Inserts characters into a string

b REPLACE Replaces characters in a string

b FIND Outputs the position of a searched character.

A detailed description of these functions is provided in Chapter 11.9 “Processing of
strings (Data type STRING)” on page 398.

Fig. 7.38 shows an example of string functions. The tag #String1 has the STRING
format and is 24 characters long. By means of the LEFT box, 16 characters are
removed left-justified from the tag and saved in the intermediate memory
#t_String. REPLACE replaces characters in a string. In the example, the characters
'0123' are replaced in the tag #t_String starting at the 10th position, and the com-
plete string is written in tag #String2.

7.6 Functions for program flow control (LAD)

The functions for program flow control are:

b The jump functions to continue program execution in the desired network

b The jump list to select a jump destination depending on a numerical value

b The jump distributor for selecting a jump destination depending on number
ranges

b The block end function to end program execution in the block

b The block call functions for calling functions and function blocks

Fig. 7.39 shows an overview of these functions. A detailed description of these func-
tions is provided in Chapter 12 “Program flow control” on page 406.

Fig. 7.38 Example of functions for strings in the ladder logic

7 Ladder logic LAD

242

7.6.1 Jump functions in the ladder logic

A JMP or JMPN jump function is used to exit the linear processing in a block and –
depending on the result of the preceding logic operation– continue this processing
in another network in the block. If JMP is connected with the left power rail, the
jump is always performed. To program a jump function, drag the JMP or JMPN func-
tion from the program elements catalog under Basic instructions > Program control
operations to the working area.

The jump label above the jump function defines the jump destination, which must
be at the beginning of a network. To program the jump destination, drag the Label
function from the program elements catalog under Basic instructions > Program
control operations to the working area.

Fig. 7.40 shows a jump function using a program loop as an example. In a #Current
data field with 16 components from #Current[0] to #Current[15], the maximum
value is searched for. The tags #Index and #MaxValue are initialized with the value
0. A comparison function in the program loop compares the value of #MaxValue
with the value of #Current[#Index]. If #MaxValue is less than #Current[#Index], it is

Fig. 7.39 Overview of functions for program flow control in the ladder logic

Jump functions Jump list

Jump distributor

Block calls
Function call (FC)

Function block call (FB)

Block end function

Functions for program flow control

FC name

JMP_LIST

SWITCH
Data type

EN

EN

EN

name1

K

K

==

==

...

name2

...

name3

DEST1

DEST1

ELSE

...

ENO

DEST0

DEST0

Instance name

FB name

EN

name1

...

name2

...

name3

...

ENO

RET
Binary tag

Jump if “1”

Jump if “0”

Jump label (jump destination)

JMP

JMPN

Destination

Destination

Destination

*

*

http://pnap.ir/siemens-s71200-price-list/

7.6 Functions for program flow control (LAD)

243

overwritten with the larger value of #Current[#Index]. #Index is then increased by
+1. As long as #Index is less than or equal to 15, it jumps to the beginning of the pro-
gram loop (to the jump destination MaxSearch) and the program part runs again.

7.6.2 Jump list in the ladder logic

The jump list is represented as a box. It is only processed if the EN input signal state
is “1”. The value of parameter K (0 to 99) determines the box output whose jump
destination is jumped to. To program the jump list, drag the JMP_LIST function from
the program elements catalog under Basic instructions > Program control operations
to the working area.

If in Fig. 7.41 the #JumpSelection tag has the value 0, it jumps to the jump label
Adder; if the value is 1, to jump label FC_call; and if the value is 3, to jump label
FB_call.

Fig. 7.40 Example of a conditional jump

Fig. 7.41 Example of a jump list

7 Ladder logic LAD

244

7.6.3 Jump distributor in the ladder logic

The jump distributor is represented as a box. The box is only processed if the EN
input signal state is “1”. The value of parameter K is compared with a value of one
of the other input parameters. If the two match, program processing continues at
the assigned jump destination. The comparison operations can be selected from a
drop-down list. To program a jump distributor, drag the SWITCH function from the
program elements catalog under Basic instructions > Program control operations to
the working area.

If in Fig. 7.42 the #JumpSelection tag has a value less than 10, it jumps to jump label
FC_call; for a value greater than 120 to jump label FB_call; otherwise to jump label
Adder.

7.6.4 Block end function in the ladder logic

The processing in a block is terminated by the RET coil. The block end function may
not be present in a network together with a jump function.

To program a block end function, drag the RET function from the program elements
catalog under Basic instructions > Program control operations to the working area.

In Fig. 7.43, the block is exited if an error occurs when processing the ADD box. The
ENO output then has the signal state “0” which is negated, thus triggering the RET
coil. The RET coil receives the result of the logic operation “0” (which is output by
the terminated block at the ENO output) by means of the FALSE constant. The result
can be scanned in the calling block.

Fig. 7.42 Example of a jump distributor

Fig. 7.43 Example of block end function

7.6 Functions for program flow control (LAD)

245

7.6.5 Block call functions in the ladder logic

Calling of blocks is represented by EN/ENO boxes. With functions (FC), the block
name is present quasi as a function name in the box; with function blocks, the
instance name (the name of the instance data block or of the local instance) is addi-
tionally present above the box.

A block call is programmed by opening the Program blocks folder in the project tree
and dragging the desired block to the working area.

In the example in Fig. 7.44, if the signal state is “1” on the “Input 2” tag, the function
“Adder_2” is called. In the event of an error in the function “Adder_2” (the ENO out-
put then has signal state “0”), the tag #AddError is also set to signal state “0”. The
program processing is then ended in the block and #AddError is specified as return
tag. This means that if the processing in the block “Adder_2” is faulty, the ENO out-
put of the ended block is set to signal state “0”.

In the example in Fig. 7.45 , the “Totalizer” function block is called. Its instance data
is present in the data block “Totalizer_DB”.

Fig. 7.44 Example of calling a function (FC)

Fig. 7.45 Example of calling a function block

8 Function block diagram FBD

246

8 Function block diagram FBD

8.1 Introduction

This chapter describes programming with function block diagram (FBD); it uses
examples to show how the program functions are represented in FBD. You can find
a description of the individual functions, e.g. comparison functions, in Chapter 10
“Basic functions” on page 328.

Use of the program and symbol editor, which generally applies to all programming
languages is described in Chapter 6 “Program editor” on page 178.

FBD is used to program the contents of blocks (the user program). What blocks are,
and how they are created, is described in Chapters 5.3 “Programming blocks” on
page 125 and 6.3 “Programming a code block” on page 183.

8.1.1 Programming with function block diagram in general

You use FBD to program the control function of the programmable controller – the
user program or control program. The user program is organized in different types
of blocks. A block is divided into sections referred to as “networks”. Each network
contains at least one logic operation, which can also have an extremely complex
structure. Each network is terminated by at least one box.

Fig. 8.1 shows the structure of a block with the FBD program. Located at the begin-
ning of the program is the block title, comprising the block heading and block com-
ment. Heading and comment are optional. These are followed by the first network
with its number, heading, and comment. Heading and comment are also optional
for the networks. The first network shows a logic operation as example with AND
and OR boxes, a memory function within the logic operation, and two assignments
as termination of the logic operation. The second network shows the processing of
EN/ENO boxes. Three of these are arranged in series, one box is on its own in the
network. A block is not terminated by a special network or function, you simply fin-
ish the program input.

The program editor constructs an FBD network from left to right: position the first
program element underneath the network comment, and insert further program
elements at its output. The boxes with binary logic operations can be provided with
further inputs. Box outputs cannot be directly connected to each other.

A logic operation must always be terminated, for example by an assignment.
The assignment controls a binary tag using the result of the logic operation.

“Open” parallel branches can lead out from the top logic operation and not be
“wired back” to the top logic operation; these are known as “T branches”. In these

8.1 Introduction

247

Fig. 8.1 Structure of a block with FBD program

8 Function block diagram FBD

248

T branches, there are certain limitations with regard to which permissible program
elements can be selected.

Where additional rules apply to the arrangement of special FBD elements, these are
described in the corresponding sections.

8.1.2 Program elements of the function block diagram

Fig. 8.2 shows which types of FBD elements exist: boxes with binary logic opera-
tions, and standard boxes for processing binary signals, Q boxes for implementing
memory, timer and counter functions, and EN/ENO boxes for “complex” functions
which, for example, carry out calculations, manipulate strings, or convert numbers
into text.

Fig. 8.2 Overview of program elements of the function block diagram

The binary control function is implemented by AND, OR and exclusive
OR boxes. The box inputs scan the signal state of the binary tag.
There are also scans with special functions such as edge evaluation
(“fleeting contact”) or the comparison of two digital tags which delivers
a binary result.

The standard boxes save the binary result of the logic operation.
They can be positioned in the middle or at the end of a logic operation.
Assignments save the result of the logic operation in binary tags.
There are also boxes with special functions such as edge evaluation
(“pulse flag”) or the simultaneous control of several bits.

Boxes with a Q output are referred to as “Q boxes”. These can have
multiple inputs, as well as extra outputs in addition to the Q output.
Examples of these boxes are the memory functions and the timer and
counter functions.

Processing of these boxes can be enabled by means of the enabling
input EN. The enabling output ENO signals whether processing has been
completed without errors. The boxes can have multiple inputs and
outputs. Examples of these boxes are the math functions or the functions
for conversion of the data type of tags.

The block calls represent the change in processing to a different block.
The box represents the called block with its input and output parameters.
The block called with the box is processed; processing is subsequently
continued with the next function following the block call.

Function

Function

Function

Function

Block

Q

OUT

OUT1

ENO

OUT2

ENO

IN1

EN

EN

IN2

IN2

IN2

IN1

IN1

Data

Binary functions

Standard boxes

Boxes with Q output

Boxes with EN input and ENO output

Block calls

8.2 Programming of binary logic operations (FBD)

249

Most program elements must be provided with tags or operand addresses at the
box inputs and outputs. It is best if you initially position all program elements in a
logic operation and subsequently label them.

8.2 Programming of binary logic operations (FBD)

The binary logic operations are carried out in the function block diagram using the
AND, OR, and exclusive OR boxes. The binary tags for the logic operation can be
scanned for signal state “1” or “0”. The binary results of other boxes can also be
included, e.g. the evaluation of a signal edge, the validity checking of floating-point
numbers, or the comparison of two digital tags (Fig. 8.3).

Fig. 8.3 Overview of binary logic operations in the function block diagram

Binary tags

Binary tag Binary tag

Binary tags

AND function OR function Exclusive OR function

Scan for “loating-point value OK” Scan for “Floating-point value not OK”

Comparison function

Floating-point tag Floating-point tag

Positive edge of a binary tag Negative edge of a binary tag

Scan for signal state “1” Scan for signal state “0”

Edge trigger flag Edge trigger flag

Digital tag 1
Digital tag 2

Binary logic operations

& >=1 X

Data type
Function

Function Function

P

OK

N

NOT_OK

http://pnap.ir/siemens-s71200-price-list/

8 Function block diagram FBD

250

8.2.1 Scanning for signal states “1” and “0”

The binary functions scan the binary tags at the function inputs before they link the
signal states together. The scan can be made for signal state “1” or “0”. When scan-
ning for signal state “1”, the function input leads directly to the box. You can recog-
nize the scanning for signal state “0” by means of the negation circle at the input of
the function.

Scanning for signal state “1” delivers a result “1” if the scanned binary tag has the
status “1”, and a result “0” if the status is “0”. Scanning for signal state “0” negates
the result, i.e. the result of the scan is now “1” if the status of the scanned binary tag
is “0”. The binary functions link the result of the scan, in other words the result
which is present “directly” on the box. Using these two possibilities for scanning bi-
nary tags, you can handle connected NO and NC contacts in the same functional
manner.

Example: Fig. 8.4 shows a sensor connected to the programmable controller which
is scanned for signal state “1” (left-hand side) and for signal state “0” (right-hand
side). The result of the scan is connected directly to a contactor.

When scanning for signal state “1” (left-hand side), the result of the scan is equal to
the signal state of the sensor: if sensor S1 is open, input %I1.0 has the signal state
“0” and the logic operation is not fulfilled. Contactor K1 controlled by output %Q4.0

Fig. 8.4 Scanning for signal states “1” and “0”

S1 S2

C1 C2C1 C2

S1 S2

%I1.0 %I1.1

%Q4.0 %Q4.1%Q4.0 %Q4.1

%I1.0 %I1.1

“0”

“1”“1”

“1”“1”

“0”“0”

“0”

Scan for signal state “1” Scan for signal state “0”

Sensor
activated

Sensor
activated

& & & &

http://pnap.ir/siemens-s71200-price-list/

8.2 Programming of binary logic operations (FBD)

251

does not pull up. If sensor S1 is then activated, input %I1.0 has the signal state “1”.
The function is fulfilled, and the contactor K1 connected to output %Q4.0 pulls up.

When scanning for signal state “0” (right-hand side), the result of the scan is equal
to the negated signal state of the sensor: if sensor S1 is open, input %I1.0 has the
signal state “0”. The negation symbol negates this signal state, and the result of the
scan is “1”. The logic operation is thus fulfilled. Contactor K1 controlled by output
%Q4.0 pulls up. If sensor S1 is then activated, input %I1.0 has the signal state “1”.
The negation symbol negates the signal state, and the result of the scan is “0”.
The function is not fulfilled, and contactor K1 connected to output %Q4.0 does not
pull up.

8.2.2 Taking account of the sensor type in the function block diagram

If you scan a sensor in your program, you must take into consideration whether it
is an NO or NC contact. Depending on the type of sensor, different signal states are
present at the corresponding input when the sensor is activated: “1” with an NO
contact and “0” with an NC contact. It is not possible for the control processor to de-
termine whether an NC or NO contact is connected to an input. It can only recognize
the signal state “1” or “0”.

If you write the program to obtain “1” when a sensor is activated in order to link it
further, you must scan the input in different ways depending on the type of sensor.
Scanning for signal states “1” and “0” is available for this purpose. Scanning for sig-
nal state “1” delivers “1” if the scanned input is also “1”. Scanning for signal state
“0” delivers “1” if the scanned input is “0”. In this manner you can also directly scan
inputs which are to execute activities when the signal state is “0” (“zero-active”) and
connect the result of the scan further.

The example in Fig. 8.5 shows the programming dependent on the type of sensor.
The AND function used is then fulfilled, i.e. the function output has the signal state
“1”, if the result of the scan “1” is present at all function inputs (for description, see
Chapter 8.2.3 “AND function” on page 252).

In the first case, two NO contacts are connected to the programmable controller, in
the second case one NO contact and one NC contact. In both cases, a contactor con-
nected to an output is to pull up when both sensors are activated. When an NO
contact is activated, the signal state at the input is “1” and is scanned for signal
state “1” so that the AND operation can be fulfilled when the sensor is activated. If
both NO contacts are activated, the AND logic operation is fulfilled and the contac-
tor pulls up.

When activating an NC contact, the signal state at the input is “0”. In order to
achieve scan result “1” in this case when activating the contact, it is necessary to
scan for signal state “0”. Therefore in the second case the NO contact must be
scanned for signal state “1” and the NC contact for signal state “0” in order for the
contactor to pull up when both sensors are activated.

8 Function block diagram FBD

252

8.2.3 AND function

The AND function links two binary signal states together and delivers a result of the
logic operation “1” if both states (both results of the scans) are simultaneously “1”.
If the AND function has several inputs, the results of the scans of all inputs must

Fig. 8.5 Taking account of the sensor type in the function block diagram

Neither sensor is activated

Neither sensor is activated

Both sensors are activated

Both sensors are activated

The contactor
pulls up

The contactor
pulls up

S3

S5

S3

S5

S4

S6

S4

S6

C3

C4

C3

C4

%I1.2

%I1.4

%I1.2

%I1.4

%I1.3

%I1.5

%I1.3

%I1.5

%Q4.2

%Q4.3

%Q4.2

%Q4.3

“0”

“0” “0”

“0” “1”

“1”

“1”

“1”

“1”

“1”

“0”

“0”

Case 1: Both sensors are NO contacts

Case 2: The sensors are one NO contact and one NC contact

&

&

&

&

http://pnap.ir/siemens-s71200-price-list/

8.2 Programming of binary logic operations (FBD)

253

be “1” so that the joint result of the logic operation is “1”. In all other cases, the AND
function delivers the result of the logic operation “0” at the function output.

An AND function has two inputs as standard. If you select the AND function when
programming and then the Add input command in the shortcut menu using the
right mouse button, the program editor extends the AND function by a further in-
put. An AND function can have any number of inputs.

Fig. 8.6 shows an example of an AND function with three inputs. The binary tags
“Input 1” and “Input 2” lead directly to the function box. The binary tag “Input 3” is
scanned for signal state “0”, which can be recognized by the negation circle on the
box. The AND function is fulfilled, i.e. the binary tag “Output 1” has signal state “1”,
if “Input 1” and “Input 2” have signal state “1” and “Input 3” has signal state “0”. In
all other cases, the AND function is not fulfilled.

If you wish to directly assign the signal state of one binary tag to another binary tag,
e.g. connect an input directly to an output, it is usual to use the AND function with
one input.

8.2.4 OR function

The OR function links two binary signal states together and delivers a logic opera-
tion result “1” if one of the states (one of the results of the scans) is “1”. If the OR
function has several inputs, it is sufficient if the result of one input scan is “1” so
that the joint result of the logic operation is “1”. If the results of all input scans are
“0”, the OR function delivers the result of the logic operation “0” at the function
output.

An OR function has two inputs as standard. If you select the OR function when pro-
gramming and then the Add input command in the shortcut menu using the right
mouse button, the program editor extends the OR function by a further input.
An OR function can have any number of inputs.

Fig. 8.6 AND function with three inputs

Fig. 8.7 OR function with three inputs

8 Function block diagram FBD

254

Fig. 8.7 shows an example of an OR function with three inputs. The binary tags
“Input 1” and “Input 2” lead directly to the function box. The binary tag “Input 3” is
scanned for signal state “0”, which can be recognized by the negation circle on the
box. The OR function is not fulfilled, i.e. the binary tag “Output 2” has signal state
“0”, if “Input 1” and “Input 2” have signal state “0” and “Input 3” has signal state “1”.
In all other cases, the OR function is fulfilled.

8.2.5 Exclusive OR function

The exclusive OR function (non-equivalence function) links two binary signal states
together and delivers a logic operation result “1” if the two states (both results of
the scans) differ. It delivers a result of the logic operation “0” if the two states (both
results of the scans) are the same.

You can also program an exclusive OR function with more than two inputs; the ex-
clusive OR function is then fulfilled if an odd number of function inputs delivers
scan result “1”.

An exclusive OR function has two inputs as standard. If you select the exclusive
OR function when programming and then the Add input command in the shortcut
menu using the right mouse button, the program editor extends the exclusive
OR function by a further input. An exclusive OR function can have any number of
inputs.

Fig. 8.8 shows an example of an exclusive OR function with two inputs. The binary
tags “Input 1” and “Input 2” lead directly to the function box. The exclusive OR func-
tion is fulfilled, i.e. the binary tag “Output 3” has signal state “1”, if “Input 1” and
“Input 2” have different signal states. If the signal states of “Input 1” and “Input 2”
are the same, the exclusive OR function is not fulfilled.

8.2.6 Mixed binary logic operations

You can combine binary functions with each other, e.g. several AND functions lead
to an OR function or two OR functions lead to an exclusive OR function. Examples
are shown in Fig. 8.9.

With which signal combination in Fig. 8.9 is the binary tag “Output 4” set to signal
state “1”? Firstly, “Input 5” and “Input 6” must have different signal states if the
AND function at the end of the logic operation is to be fulfilled. The other condition
is that either “Input 1” and “Input 2” both have signal state “1” or that “Input 3” and
“Input 4” have different signal states.

Fig. 8.8 Exclusive OR function with two inputs

8.2 Programming of binary logic operations (FBD)

255

8.2.7 T branch in the function block diagram

Additional possibilities for binary logic operations are provided when a “T branch”
is present in an operation. This is a parallel branch (a “parallel logic operation”)
which commences in an operation and is terminated by a box.

Fig. 8.10 shows a T branch. It commences with the first AND function and is finished
by the assignment to “Output 6”. In the example, “Output 5” then has signal state
“1” if “Input 0”, “Input 1”, and “Input 2” have signal state “1”, which corresponds to
an AND function with three inputs. “Output 6” has signal state “1” if “Input 0” and
“Input 1” both have signal state “1” or “Input 3” has signal state “1”.

8.2.8 Negate result of logic operation in the function block diagram

A circle at the input or output of a function symbol negates the result of the logic
operation. You can

b apply the negation to the scan of a binary tag; this then corresponds to
scanning for signal state “0” (see Section 8.2.1 “Scanning for signal states
“1” and “0”” on page 250),

b set the negation between two binary functions (this corresponds to negation
of the result of the logic operation), or

Fig. 8.9 Example of a combined binary logic operation

Fig. 8.10 T branch in the function block diagram

8 Function block diagram FBD

256

b position the negation at the output of a binary function (e.g. if you wish
to set a binary tag and the logic operation is not fulfilled, i.e. the result of
the logic operation = “0”).

Program the negation using the Invert RLO program element from the favorites of
the program editor or from the program elements catalog under General. You can
drag the Invert RLO element to an input or output of a box using the mouse, or select
the input or output and click on Invert RLO. If you wish to cancel a negation, drag
Invert RLO over again, or select the negation and click on Invert RLO.

Fig. 8.11 shows three examples of the negation of a function output. A NAND func-
tion is an AND function with negated output: the output only has signal state “0” if
the scan result “1” is present at all inputs. A NOR function is an OR function with
negated output: the output only has signal state “1” if neither of the inputs has the
scan result “1”. An exclusive OR function with a negated output is also referred to
as an inclusive OR function (equivalence function): The output only has signal state
“1” if the scan results are the same for both inputs. If more than two inputs are pres-
ent, an even number of inputs must have the scan result “1” so that the inclusive OR
function is fulfilled.

8.2.9 Edge evaluation of binary tags in the function block diagram

The edge evaluation of a binary tag has the signal state “1” for one processing cycle
if the signal state of the binary tag named above it changes from “0” to “1” (P box,
rising edge) or from “1” to “0” (N box, falling edge). It responds like a “fleeting
contact”. This “pulse” can be linked further.

The edge trigger flag is named underneath the edge box. This is a flag or data bit
which saves the signal state of the binary tag. The signal edge is recognized by com-
paring the signal states of binary tags and edge trigger flags (see also Chapter 10.3
“Edge evaluation” on page 338).

Fig. 8.11 Negating the result of the logic operation, example of a negated function output

8.2 Programming of binary logic operations (FBD)

257

In Fig. 8.12, the binary tag “Memory 1” is set to signal state “1” if “Input 1” changes
its signal state from “0” to “1” while “Input 2” has signal state “1”. “Memory 1” is
reset again by a change in signal state at “Input 3” from “1” to “0” or by signal state
“1” at “Input 4”.

8.2.10 Validity checking of floating-point numbers in
the function block diagram

The OK box checks a floating-point tag for validity, i.e. whether the range limits for
this data type have been observed. The NOT_OK box is the opposite, it delivers sig-
nal state “1” if the floating-point tag is not valid. The OK box and the NOT_OK box
are positioned at the beginning of a logic operation.

The example in Fig. 8.13 shows a validity scan of “REAL-Var 1” which, when ANDed
with “Input 5”, controls the binary tag “Output 1”. “Output 2” is set if “Input 6” has
signal state “1” or if “REAL-Var 2” is outside the valid range of values.

Fig. 8.12 Edge evaluation of a binary tag

Fig. 8.13 Validity checking of floating-point numbers

8 Function block diagram FBD

258

8.2.11 Comparison functions in the function block diagram

A comparison function is represented in the function block diagram as a box with
two inputs for digital tags which are compared with each other. A correct compari-
son delivers a logic operation result “1” at the function output. If the comparison is
incorrect, the result of the logic operation is “0”.

Comparison functions are available for equal to, not equal to, greater than, greater
than or equal to, less than, and less than or equal to. The comparison is carried out
in accordance with the data type of the digital tags involved (for description, see
Chapter 11.2 “Comparison functions” on page 364).

The example in Fig. 8.14 shows a comparison between two digital tags with the data
type REAL. If the values of the two tags are the same, “Output 3” is set to signal
state “1”, otherwise to “0”. “Output 4” has signal state “1” if either the tag “INT-
Var 1” is greater than 125 or the tag “INT-Var 2” is smaller than 16 000.

In addition there are range comparisons which check whether the value of a digital
tag is within or outside a numerical range.

8.3 Programming with standard boxes (FBD)

Standard boxes control binary tags such as outputs or bit memories. An assignment
box sets the binary tag if signal state “1” is present at the function input, and resets
it again with signal state “0”. The reverse is true with the negated assignment box
(Fig. 8.15).

Standard boxes exist for setting and resetting a binary tag or for pulse generation
during evaluation of signal edges. Standard boxes can also be used to set and reset
bit fields, to execute jumps in the program, and to terminate a block.

Standard boxes can be used within a logic operation, following a T branch, or as the
termination of an operation. They can be positioned in series or parallel. A standard

Fig. 8.14 Comparison functions in a binary logic operation

8.3 Programming with standard boxes (FBD)

259

box standing on its own without a previous logic operation has the signal state “1”
at the function input.

8.3.1 Assignment and negated assignment

The result of the logic operation is directly assigned to the tag named above the as-
signment box: with a logic operation result “1”, the tag is set, and with a logic oper-
ation result “0”, it is reset. You can control several assignment boxes simultaneous-
ly using the result of the logic operation by arranging the boxes in parallel
(Fig. 8.16). All tags named above the coils react in the same manner (first logic op-
eration).

With the negated assignment, the tag named above the box is set if the result of the
logic operation is “0”; it is reset if the result of the logic operation is “1” (second
logic operation): if the AND function with “Input 3” and “Input 4” is fulfilled, “Out-
put 3” is set to signal state “0”.

Fig. 8.15 Overview of standard boxes

Start timer
function

Reset timer
function

Set time
duration

Timer function Timer function Timer function

Standard boxes

FKT
Time

RT PT

VALUE
PT

FKT:
TP Accumulate time
TON OFF delay
TOF ON delay
TONR Pulse time

Negated assignment Reset box

Binary tag Binary tagBinary tag Binary tag

Assignment Set box

= S/= R

Pulse on
positive edge

Pulse on
negative edge

Binary tag Binary tag

Edge trigger flag Edge trigger flag

P= N=

Multiple
setting

Multiple
resetting

Binary tag Binary tag
SET_BF RESET_BF

EN EN

NN

Jump with “1” Jump with “0”

Jump destination Jump destination
JMP JMPN

Conditional block end

Binary tag
RET

http://pnap.ir/siemens-s71200-price-list/

8 Function block diagram FBD

260

The third logic operation shows the position of an assignment within an operation.
The tag “Output 4 “ is set if “Input 5” and “Input 6” both have signal state “1”.
If “Input 7” also has signal state “1”, the tag “Output 5” is set.

You can position further binary logic operations following a T branch or in front of
the assignment (bottom operation). The result of the logic operation is not influ-
enced by an assignment box positioned within an operation. Assignment boxes po-
sitioned in series react like parallel ones.

8.3.2 Set and reset boxes

With the logic operation result “1” on the set box, the binary tag named above the
box is set to the signal state “1”. With the logic operation result “1” on the reset box,
the tag named above the box is reset to the signal state “0”. With the logic operation
result “0” on the set or reset box, the binary tag remains uninfluenced (Fig. 8.17).

You can position several set and reset boxes in any combination in the same logic
operation and also together with assignment boxes.

As with the assignment box, you can position the set and reset boxes within a logic
operation or following a T branch. Without a previous logic operation (with func-
tion input open), the box is always activated.

Fig. 8.16 Assignment and negated assignment

8.3 Programming with standard boxes (FBD)

261

8.3.3 Edge evaluation with pulse output in the function block diagram

The P= and N= boxes are available for edge evaluation with pulse output. The binary
tag named above the P= box is set for the duration of one program cycle if the logic
operation result of the previous operation changes from signal state “0” to “1” (ris-
ing edge).

With the N= box, the binary tag named above the box is set for the duration of one
program cycle with a falling edge of the previous operation (change in logic opera-
tion result from “1” to “0”) (Fig. 8.18).

The binary tag named above the box is referred to as a “Pulse bit memory”. Suitable
for pulse bit memories are operand types which are not connected “outside” to
modules, for example tags from the bit memory or data areas. The edge trigger flag
is named under the box, and must be a different tag for each edge evaluation (see
Chapter 10.3 “Edge evaluation” on page 338).

The edge boxes can be positioned within a logic operation or terminate an opera-
tion. Edge boxes can also be programmed following a T branch.

Fig. 8.17 Set and reset boxes

Fig. 8.18 Edge evaluation of logic operation result (with “pulse bit memory”)

8 Function block diagram FBD

262

8.3.4 Multiple setting and resetting (filling of bit field) in
the function block diagram

With the logic operation result “1” at the EN input, the SET_BF box sets a bit field to
signal state “1”. The bit field is defined by the start tag named above the box and the
number of bits at the function input N. With the logic operation result “1”, the
RESET_BF box resets the bits in the bit field.

There is no response if the result of the logic operation at the EN input is “0”. If the
SET_BF and RESET_BF boxes do not have a previous operation, they are always exe-
cuted.

In the example in Fig. 8.19, the bit field for the SET_BF box is defined by the start
tag “Bitfield0” which is followed by seven bits (thus a total of eight bits). The bit field
for the RESET_BF box is in the data block “Data80”, commences with the field
(binary) component Bitfield[1], and ends after 15 subsequent bits.

8.3.5 Starting IEC timer functions in the function block diagram
with standard boxes

You can use the timer functions to implement timing processes in the
program such as waiting and monitoring times, measurement of a time interval, or
the generation of pulses. An IEC timer function can be started with two different
program elements: with a standard box or with a Q box (see Chapter 8.4.5 “Control-
ling IEC timer functions in the function block diagram with Q boxes” on page 267).
Both variants are equally useful. A detailed description of the timer functions is
provided in Chapter 10.4 “Time functions” on page 344.

A timer function can be started with one of the four behavior patterns TP, TON, TOF,
and TONR. A timer function requires internal data for each application. You can
specify where this data is to be saved when programming: For the Single instance
entry in its own data block with the data type IEC_TIMER and for the Multi-instance

Fig. 8.19 Filling of bit field with SET_BF and RESET_BF

8.3 Programming with standard boxes (FBD)

263

entry in the instance data block of the calling function block with a data type that
depends on the behavior of the timer function (TP_TIME, TON_TIME, TOF_TIME,
TONR_TIME). You address a timer function with the name of the instance data – data
block or local data.

The standard box for starting a timer function requires a preceding logic operation.
It can only be placed at the end of a logic operation. Under the standard box is the
duration with which the timer function is started.

A timer function is reset using the RT box. The RT box can be programmed in the
middle of a logic operation or as its termination.

The PT box sets the duration of a timer function. Each processing with signal state
“1” overwrites the duration in the instance data with the value given under the box.

Fig. 8.20 shows the standard boxes used in connection with IEC timer functions. In
the first logic operation, the timer function in the local data with the name #Timer_-
function is started as ON delay with the value #Duration. The status of the timer
function can be scanned with the structure component Q. The example shows start-
ing the timer function, resetting the timer function, and setting the duration with
a rising edge.

Fig. 8.20 Processing a timer function with standard boxes

8 Function block diagram FBD

264

8.4 Programming with Q boxes (FBD)

“Q boxes” is the abbreviation for boxes with an output parameter named “Q”. These
are the memory boxes SR and RS, the edge evaluations P_TRIG and N_TRIG, and the
timer and counter functions (Fig. 8.21).

With Q boxes, the first binary input (and in certain cases the associated parameter)
must be connected, connection of the other inputs and outputs is optional.

8.4.1 Arrangement of Q boxes in the function block diagram

When using Q boxes as program elements, you can:

b Program one single box per network, either within the logic operation or as its
termination

b Arrange boxes in series by connecting the Q output of one box to a binary input
of the following box, and

b Position boxes following T branches.

The circuits shown in Fig. 8.21 for the positioning of Q boxes use the memory box
with two inputs as an example. This enables the possible positioning of all Q boxes
to be shown.

Fig. 8.21 Overview of Q boxes available with FBD

RS memory boxSR memory box

Evaluation with
falling edge

Evaluation with
rising edge

Timer functions TP, TON, TOF and TONR
Counter functions CTU, CTD, CTUD

Represented as local instance or
with own data block

Binary variable Binary variable

SR RS

S R

R1 S1

Edge trigger flag Edge trigger flag

P_TRIG N_TRIG

CLK CLKQ

Q Q

Q

FunctionFunction
#Instance

ININ

...

...

...

...

......

...

Q

...

Q

“Instance”

Boxes with Q outputs

8.4 Programming with Q boxes (FBD)

265

8.4.2 Memory boxes in the function block diagram

There are two versions of the memory boxes: as SR box (reset dominant) and as
RS box (set dominant). In addition to the difference in the function name, the two
boxes also differ in the positioning of the set and reset inputs.

The binary tag named above the memory box is set when the set input has signal
state “1” and the reset input has signal state “0”. The binary tag is reset when “1” is
present at the reset input and “0” at the set input. Signal state “0” at both inputs has
no influence on the memory function. If signal state “1” is present simultaneously
at both inputs, the two memory functions respond differently: the SR memory func-
tion is reset, the RS memory function is set.

Fig. 8.22 Positioning of Q boxes using example of SR memory function

8 Function block diagram FBD

266

If both tags “Input 1” and “Input 2” in Fig. 8.23 simultaneously have the same signal
state “1”, “Memory 1” is reset (function input R1 is dominant). If both “Input 3” and
“Input 4” simultaneously have the same signal state “1”, “Memory 2” is set (func-
tion input S1 is dominant).

8.4.3 Edge evaluation of logic operation result in
the function block diagram

The edge evaluation with Q boxes registers a change in the result of the logic oper-
ation prior to the box. If the logic operation result changes from “0” to “1” (rising
edge) at the CLK input of the P_TRIG box, signal state “1” is present at the Q output
for the duration of one program cycle.

If the result of the logic operation changes from “1” to “0” (falling edge) at the
CLK input of the N_TRIG box, the Q output is activated for the duration of one pro-
gram cycle.

The P_TRIG or N_TRIG-Box must not terminate a logic operation.

Fig. 8.24 shows an example of Q boxes with edge evaluation. The tag “Memory 3” is
set at the moment when both “Input 5” and “Input 6” have the signal state “1”. The
memory function is reset at the moment when “Input 7” and “Input 0” both have
signal state “1”.

Fig. 8.23 Memory boxes SR and RS

Fig. 8.24 Example of edge evaluation of the logic operation result (with Q boxes)

8.4 Programming with Q boxes (FBD)

267

8.4.4 Example of binary scaler in the function block diagram

A binary scaler has one input and one
output. If the signal at the input of the bi-
nary scaler changes its state, e.g. from
“0” to “1”, the output also changes its sig-
nal state. This (new) signal state is then
retained until the next change, which is
positive in our example. Only then does the signal state of the output change again.
Half of the input frequency is then present at the binary scaler's output.

A solution for this task is shown in Fig. 8.25. If the tag “Input 1” has signal state “1”,
the tag “Output 1” is set (“Memory 1” is still reset). If the signal state at “Input 1”
changes to “0”, “Memory 1” is also set (“Output 1” is then “1”). If “Input 1” is “1” the
next time around, “Output 1” is reset again (“Memory 1” is now “1”). If “Input 1” is
“0” again, “Memory 1” is reset (since “Output 1” is now also reset). The “basic state”
has now been reached again following two input pulses and one output pulse.

8.4.5 Controlling IEC timer functions in the function block diagram
with Q boxes

You can use the timer functions to implement timing processes in the program
such as waiting and monitoring times, measurement of a time interval, or the gen-
eration of pulses. An IEC timer function can be started with two different program
elements: With a standard box (see Chapter 8.3.5 “Starting IEC timer functions in
the function block diagram with standard boxes” on page 262) or with a Q box. Both
variants are equally useful. A detailed description of the timer functions is provided
in Chapter 10.4 “Time functions” on page 344.

A timer function can be started with one of the four behavior patterns TP, TON, TOF,
and TONR. A timer function requires internal data for each application. You can

Fig. 8.25 Example of binary scaler in function block diagram

Input

Output

8 Function block diagram FBD

268

specify where this data is to be saved when programming: For the Single instance
entry in its own data block with the data type IEC_TIMER and for the Multi-instance
entry in the instance data block of the calling function block with a data type that
depends on the behavior of the timer function (TP_TIME, TON_TIME, TOF_TIME,
TONR_TIME). You address a timer function with the name of the instance data –
data block or local data.

The top timer function “Timer 1” in Fig. 8.26 saves its data as a local instance with
the name #“Timer 1” in the calling function block. This is started with “Input 1” and
“Duration 1”. The tag “Output 1” has signal state “1” for as long as defined by the
tag “Duration 1”.

The bottom timer function “Timer 2” saves its data in a separate data block
“Timer 2”. This is started with “Input 2” and “Duration 2”. After the time has
elapsed, the tag “Output 2” has signal state “1”.

The name of the local instance (#“Timer 1”) and the name of the data block
(“Timer 2”) address the respective timer functions. Component Q of the data struc-
ture provides the status of the timer function and can also be scanned at other
points in the user program.

8.4.6 IEC counter functions in the function block diagram

You can use the IEC counter functions to execute counting tasks directly using the
control processor. The counter functions can count up and down; the numerical
range depends on the data type of the preset value. The data types USINT, UINT,
UDINT, SINT, INT and DINT are available.

The counting frequency of the counter functions depends on the execution time of
the user program. In order to count, the CPU must recognize a change in the signal
state of the input pulse, i.e. the input pulse and the pause must be present for at

Fig. 8.26 Examples of timer functions

8.4 Programming with Q boxes (FBD)

269

least one program cycle. The longer the program execution time, the lower the
counting frequency. A detailed description of the counter functions is provided in
Chapter 10.5 “Counter functions” on page 349.

A counter function can be controlled with one of the three behavior patterns CTU,
CTD, and CTUD. A counter function requires internal data for each application. You
can specify where this data is to be saved when programming: by specifying Single
instance for storage in a separate data block, and by specifying Multi-instance for
storage in the instance data block of the calling function block.

The data type of a counter function is based on the data type of the count value. If,
for example, an up-counter (CTU) with a DINT count value is programmed as a sin-
gle instance, the data type IEC_DCOUNTER is taken as a basis for the data block (see
Chapter 4.8.2 “IEC_COUNTER system data type” on page 112); as a local instance,
the counter function has the data type CTU_DINT (see Chapter 4.6.2 “Parameter
types for IEC counter functions” on page 108). You address the counter function
with the name of the instance data – data block or local data.

The top counter function “Counter 1” in Fig. 8.27 saves its data as a local instance
with the name #“Counter 1” in the calling function block. The actual count value
“Count value 1” is set by “Input 4” to zero. “Input 3” increments the actual count
value by one unit with each positive edge. If the count value reaches the default
value “Preset value 1” and then exceeds it, the tag “Output 4” at output Q is set.

The second counter in the example is an up/down counter. “Input 7” sets the actual
count value to zero, “Input 8” loads the default value “Preset value 2” as the actual
count value. “Input 5” increments the count value by one unit with each positive
change in signal, “Input 6” decrements the count value by one unit with each posi-
tive change in signal.

Fig. 8.27 Examples of counter functions

8 Function block diagram FBD

270

The QU output has the signal state “1” if the actual count value at the CV output is
equal to or greater than the default value at the PV input. The QD output has the sig-
nal state “1” if the actual count value is zero or less than zero.

The lower QU output can be further connected directly. In the example, it is used to
control the tag “Output 5”. The QD output cannot be supplied, but can be scanned
indirectly via the corresponding component QD of the counter structure. (For the
QU output, this would be the component QU.)

The name of the local instance (#“Counter 1”) and the name of the data block
(“Counter 2”) address the respective counter function. In the example, “Counter 2”
has its own data block, and the QD output is scanned with the name “Counter 2”.QD.
The result of the query can be connected further, e.g. to control an assignment.

8.5 Programming with EN/ENO boxes (FBD)

EN/ENO boxes have an enabling input EN and an enabling output ENO. The enabling
input can be used to suppress processing of the box. If an error occurs while the box
is being processed, this is displayed at the enabling output.

A detailed description of the functions with EN/ENO boxes can be found in the cor-
responding sections. Programming of the EN/ENO boxes in the function block dia-
gram is the primary focus here. Fig. 8.28 provides an overview of the functions im-
plemented with EN/ENO boxes.

The parameters of the EN/ENO boxes must all be connected. The enabling input EN
and the enabling output ENO are not parameters of the box function. They are used
for processing boxes, and are added by the program editor to the box function.

A detailed description of EN and ENO and how the EN/ENO mechanism can be used
with self-created blocks can be found in Chapter 12.4.1 “EN/ENO mechanism with
LAD and FBD” on page 418.

The block calls in the function block diagram which are also shown as EN/ENO boxes
are described in Chapter 8.6.5 “Block call functions in the function block diagram”
on page 282.

8.5.1 Positioning of EN/ENO boxes in the function block diagram

Fig. 8.29 uses the MOVE function to show the positioning of EN/ENO boxes in a logic
operation. An EN/ENO box can be positioned on its own in a network, with or with-
out connection of the EN input or the ENO output.

The ENO output can be connected to the EN input of the following box. A binary tag
at the EN input of the first box can be used to switch processing of the complete box
series on and off. The ENO output of the last box indicates by means of signal state
“1” that the complete sequence has been executed without errors.

8.5 Programming with EN/ENO boxes (FBD)

271

The ENO output of one box can be connected to the ENO output of another box. If
an EN/ENO box is positioned in a T branch, its ENO output can no longer be returned
to the logic operation at which the T tap commences.

8.5.2 Transfer functions in the function block diagram

Boxes with the following transfer functions are available in the programming
language FBD:

b Copy an operand or tag (MOVE)

b Read a field component with variable index (FieldRead)

b Write a field component with variable index (FieldWrite)

b Copy a data area (MOVE_BLK)

b Copy a data area without interruption (UMOVE_BLK)

b Fill a data area (FILL_BLK)

b Fill a data area without interruption (UFILL_BLK)

b Exchange the bytes within a tag (SWAP).

Fig. 8.28 Overview of boxes with enable input EN and enable output ENO

MOVE

SHR

CONV

T_CONV S_CONV

EXPT

CONCAT

ADD

XOR

EN

EN

EN

EN EN

EN

EN

EN

EN

IN

IN

N

IN

IN IN

IN1

IN1

IN2

IN2

IN1

IN1

IN2

IN2

OUT1

ENO

OUT

OUT OUT

ENO

ENO

ENO

ENO

OUT2

OUT

ENO

ENO

ENO ENO

OUT

OUT

OUT

OUT

Transfer
functions
e.g. transfer

Shift functions
e.g. shift to right

Conversion
functions for
numerical values

Conversion
functions for
time values

Conversion
functions
for strings

Arithmetic
functions
e.g. add

Logic functions
e.g. digital logic
operation XOR

Mathematical
functions
e.g. exponentiate

String functions
e.g. concatenate

Boxes with EN input and ENO output

8 Function block diagram FBD

272

A detailed description of the transfer functions is provided in Chapter 11.1 “Trans-
fer functions” on page 356.

Fig. 8.30 shows an example of the programming of transfer functions. If the tag
“Input 1” changes the signal state from “0” to “1”, the MOVE and FILL_BLK boxes
will be executed.

The MOVE box copies the content of tag #Int1 to tag #Field1[1]. #Field1[1] is a com-
ponent of the tag #Field1 with the same data type as the tag #Int1.

The MOVE box can be provided with further outputs: select the MOVE box and then
the Insert output command from the shortcut menu. In the example, the content of
#Int1 is also transferred to the tag #Field1[9] and to the component #Struc-
ture1.Int1.

The FILL_BLK box transfers the value 1234.567 to four successive components of
the field tag #Field3, starting with #Field3[1]. The tag #Field3 consists of compo-
nents with data type REAL.

Fig. 8.29 Positioning of EN/ENO boxes in the function block diagram using example
of MOVE box

8.5 Programming with EN/ENO boxes (FBD)

273

8.5.3 Arithmetic functions for numerical values in the function block diagram

Boxes with the following arithmetic functions for numerical values are available in
the programming language FBD:

b Add (ADD), subtract (SUB), multiply (MUL) and divide (DIV) two numerical
values

b Divide with remainder as result (MOD)

b Form absolute value (ABS), negation (NEG, multiplication by –1), decrement
(DEC, reduce numerical value by 1) and increment (INC, increase numerical
value by 1).

A detailed description of these arithmetic functions is provided in Chapter 11.3
“Arithmetic functions for numerical values” on page 366.

Fig. 8.31 shows an example of the arithmetic functions with numerical values. Two
tags of data type INT are added, and the intermediate result is saved in the tempo-
rary tag #t_Int1. This intermediate result is multiplied by –1 and output to tag
#Int3. The absolute value of tag #Int1 is generated; this value is divided by 3 and the
remainder of the division written to tag #Int4.

8.5.4 Arithmetic functions with time values in the function block diagram

In the FBD programming language, durations (time spans, data type TIME) and
points in time (date and time, data type DTL) can be connected together. Boxes with
the following arithmetic functions are available for this:

Boxes with the following arithmetic functions are available for this:

b Add two durations, or add a duration to a point in time (T_ADD)

b Subtract two durations, or subtract one duration from a point in time (T_SUB)

b Generate the difference between two points in time (T_DIFF).

A detailed description of these arithmetic functions is provided in Chapter 11.4
“Arithmetic functions for time values” on page 369.

Fig. 8.30 Example of the transfer functions in the function block diagram

8 Function block diagram FBD

274

Fig. 8.32 shows an example of arithmetic functions with time values. The difference
between the tags #Date1 and #Date2 is generated. The result is a duration in TIME
format. Eight hours are added to this duration, and the result output to tag #Dura-
tion2.

8.5.5 Math functions in the function block diagram

Boxes with the following math functions are available in the programming
language FBD:

b Trigonometric functions: sine (SIN), cosine (COS), tangent (TAN)

b Arc functions: arcsine (ASIN), arccosine (ACOS), arctangent (ATAN)

b Form square (SQR) and square root (SQRT)

b Exponential function to base e (EXP)

b Exponential function to any base (EXPT)

Fig. 8.31 Example of arithmetic functions for numerical values in the function block diagram

Fig. 8.32 Example of arithmetic functions with time values in the function block diagram

8.5 Programming with EN/ENO boxes (FBD)

275

b Natural logarithm (LN)

b Extract decimal places (FRAC)

A detailed description of these math functions is provided in Chapter 11.5 “Mathe-
matical functions” on page 372.

Fig. 8.33 shows an example of the math functions.

The tag #c is calculated according to the equation. The square of #a
is formed first. When inputting tag names – which can also be keywords (in the
input, “a” can also stand for “output”) or which can have the same name both locally
and globally – the tag must be labeled accordingly: for a local tag with a preceding
number sign (#), for a global tag with the name in quotation marks, and for an oper-
and (absolute address) with a preceding percent sign (%).

In the example, the squares of #a and #b are stored temporarily and added. #t_Real1
is used again for the buffer. The result of the square root extraction is saved in the
tag #c.

8.5.6 Conversion functions in the function block diagram

Boxes with the following conversion functions are available in the programming
language FBD:

b CONV (conversion of BYTE, WORD, DWORD, SINT, INT, DINT, USINT,
UINT, UDINT, REAL, LREAL, BCD16, BCD32)

b ROUND, FLOOR, CEIL, TRUNC (conversion of REAL, LREAL into SINT,
INT, DINT, USINT, UINT, UDINT, REAL, LREAL)

b SCALE_X, NORM_X (scaling and standardization)

b T_CONV (conversion of TIME into DINT and vice versa)

b S_CONV, STRG_VAL, VAL_STRG (conversion of SINT, INT, DINT, USINT,
UINT, UDINT, REAL into STRING and vice versa)

Fig. 8.33 Example of math functions in the function block diagram

c a2 b2+=

8 Function block diagram FBD

276

A detailed description of the conversion functions is provided in Chapter 11.6 “Con-
version functions (Conversion of data type)” on page 376.

Fig. 8.34 shows an example of the conversion functions.

The conversion function CONV is used to convert a 7-digit BCD number into a DINT
format number and subsequently into REAL format (tag #Real2). The value of
#Real2 is divided by 107 and converted into a fixed-point number between the limits
of –150 and +250.

8.5.7 Shift functions in the function block diagram

Boxes with the following shift functions are available in the programming
language FBD:

b Shift to right (SHR) and left (SHL)

b Rotate to right (ROR) and left (ROL)

A detailed description of the shift functions is provided in Chapter 11.7 “Shift func-
tions” on page 389.

Fig. 8.34 Example of conversion functions in the function block diagram

Fig. 8.35 Example of shift functions in the function block diagram

8.5 Programming with EN/ENO boxes (FBD)

277

Fig. 8.35 shows an example of the shift functions. The content of tag #Int2 is shifted
three places to the right and output to tag #Int3. Shifting of fixed-point numbers
one place to the right is equivalent to a division by two. In the example, tag #Int2 is
divided by eight (23) and the rounded-off result output to tag #Int3.

8.5.8 Logic functions in the function block diagram

Boxes with the following logic functions are available in the programming
language FBD:

b Digital logic operations AND, OR and XOR

b Invert (INV)

b Code bit (DECO) and set bit number (ENCO)

b Selection functions (SEL, MUX), minimum and maximum selection (MIN, MAX),
limiter (LIMIT)

A detailed description of the logic functions is provided in Chapter 11.7 “Shift func-
tions” on page 389.

Fig. 8.36 shows an example of the logic functions.

The MUX function is used to select the components whose number is present in the
tag #Selection from the first four components of field tag #Field4. If, for example,
the tag #Selection has a value of 3, the tag #Field4[3] will be selected.

If the value of #Selection is not between 1 and 4, the value of the tag #Real4 is used
as a substitute. The result of the selection is limited to the range between –375 and
+1200 and output to #Real1.

The MUX box has been extended in the example by two inputs: select the box when
programming and then the Insert input command from the shortcut menu.

Fig. 8.36 Example of logic functions in the function block diagram

8 Function block diagram FBD

278

8.5.9 Functions for strings in the function block diagram

Boxes with the following functions for strings are available in the programming
language FBD:

b LEN Outputs the length of a string

b CONCAT Combines two strings together

b LEFT Outputs the left part of a string

b RIGHT Outputs the right part of a string

b MID Outputs the middle part of a string

b DELETE Deletes part of a string

b INSERT Inserts characters into a string

b REPLACE Replaces characters in a string

b FIND Outputs the position of a searched character

A detailed description of these functions is provided in Chapter 11.9 “Processing of
strings (Data type STRING)” on page 398.

Fig. 8.37 shows an example of string functions. The tag #String1 has the STRING
format and is 24 characters long. By means of the LEFT box, 16 characters are re-
moved left-justified from the tag and saved in the intermediate memory #t_String.
REPLACE replaces characters in a string. In the example, the characters '0123' are re-
placed in the tag #t_String starting at the 10th position, and the complete string is
written in tag #String2.

Fig. 8.37 Example of functions for strings in the function block diagram

8.6 Functions for program flow control (FBD)

279

8.6 Functions for program flow control (FBD)

The functions for program flow control are:

b The jump functions to continue program execution in the desired network

b The jump list to select a jump destination depending on a numerical value

b The jump distributor for selecting a jump destination depending on
number ranges

b The block end function to end program execution in the block

b The block call functions for calling functions and function blocks

Fig. 8.38 shows an overview of these functions. A detailed description of these func-
tions is provided in Chapter 12 “Program flow control” on page 406.

Fig. 8.38 Overview of functions for program flow control in the function block diagram

JMP

JMPN

RET

Binary tag

Destination

Destination
SWITCH

Data type

EN

K

==

== DEST1

ELSE

DEST0

*

Jump functions Jump list

Jump distributor

Block calls
Function call (FC)

Function block call (FB)

Block end function

Functions for program flow control

FC name

JMP_LIST

EN

EN

name1

K

...

name2

...

name3

DEST1

...

ENO

DEST0

DB name

FB name

EN

name1

...

name2

...

name3

...

ENO

Jump if “0”

Jump if “1”

Jump destination

Destination

*

8 Function block diagram FBD

280

8.6.1 Jump functions in the function block diagram

A JMP or JMPN jump function is used to exit the linear processing in a block and –
depending on the result of preceding logic operation – continue this processing in
another network in the block. If there is no preceding logic operation for JMP, the
jump function is always performed. To program a jump function, drag the JMP or
JMPN function from the program elements catalog under Basic instructions > Pro-
gram control operations to the working area.

The jump label above the jump function defines the jump destination, which must
be at the beginning of a network. To program the jump destination, drag the Label
function from the program elements catalog under Basic instructions > Program
control operations to the working area.

Fig. 8.39 shows a jump function using a program loop as an example. In a #Current
data field with 16 components from #Current[0] to #Current[15], the maximum
value is searched for. The tags #Index and #MaxValue are initialized with the value
0. A comparison function in the program loop compares the value of #MaxValue
with the value of #Current[#Index]. If #MaxValue is less than #Current[#Index], it is
overwritten with the larger value of #Current[#Index]. #Index is then increased by
+1. As long as #Index is less than or equal to 15, it jumps to the beginning of the pro-
gram loop (to the jump destination MaxSearch) and the program part runs again.

Fig. 8.39 Example of a program loop with conditional jump

8.6 Functions for program flow control (FBD)

281

8.6.2 Jump list in the function block diagram

The jump list is represented as a box. It is only processed if the EN input signal state
is “1”. The value of parameter K (0 to 99) determines the box output whose jump
destination is jumped to. To program the jump list, drag the JMP_LIST function from
the program elements catalog under Basic instructions > Program control operations
to the working area.

If in Fig. 8.40 the #JumpSelection tag has value 0, it jumps to the Adder jump label;
if the value is 1, to the jump label FC_call, and if the value is 3, to the jump label FB_-
call.

8.6.3 Jump distributor in the function block diagram

The jump distributor is represented as a box. The box is only processed if the EN
input signal state is “1”. The value of parameter K is compared with a value of one
of the other input parameters. If the two match, program processing continues at
the assigned jump destination. The comparison operations can be selected from
a drop-down list. To program a jump distributor, drag the SWITCH function from
the program elements catalog under Basic instructions > Program control operations
to the working area.

If in Fig. 8.41 the #JumpSelection tag has a value less than 10, it jumps to jump label
FC_call; for a value greater than 120 to jump label FB_call; otherwise to jump label
Adder.

Fig. 8.40 Example of a jump list

Fig. 8.41 Example of a jump distributor

8 Function block diagram FBD

282

8.6.4 Block end function in the function block diagram

The processing in a block is terminated by the RET box. The block end function
may not be present in a network together with a jump function.

To program a block end function, drag the RET function from the program elements
catalog under Basic instructions > Program control operations to the working area.

In Fig. 8.42, the block is exited if an error occurs when processing the ADD box. The
ENO output has the signal state “0” which is then negated, thus triggering the RET
box. The RET box receives the logic operation result “0” (which is output by the ter-
minated block at the ENO output) by means of the FALSE constant. The result can
be scanned in the calling block.

8.6.5 Block call functions in the function block diagram

Calling of blocks is represented by EN/ENO boxes. With functions (FC), the block
name is present quasi as a function name in the box; with function blocks, the
instance name (the name of the instance data block or of the local instance) is addi-
tionally present above the box.

A block call is programmed by opening the Program blocks folder in the project tree
and dragging the desired block to the working area.

Fig. 8.42 Examples of a block end function

Fig. 8.43 Example of calling a function (FC)

8.6 Functions for program flow control (FBD)

283

In the example in Fig. 8.43, if the signal state is “1” at the “Input 2” tag, the function
“Adder_2” is called. Program processing in the block is then ended with the value of
the return variable #AddError.

In the example in Fig. 8.44, the “Totalizer” function block is called. Its instance data
is present in the data block “Totalizer_DB”.

Fig. 8.44 Example of calling a function block

9 Structured Control Language SCL

284

9 Structured Control Language SCL

9.1 Introduction to programming with SCL

This chapter describes programming with Structured Control Language (SCL); it
uses examples to show how the program functions are represented in SCL. You can
find a description of the individual functions, e.g. comparison functions, in Chap-
ters 10 “Basic functions” on page 328, 11 “Digital functions” on page 355, and 12
“Program flow control” on page 406.

Use of the program and symbol editor, which generally applies to all programming
languages, is described in Chapter 6 “Program editor” on page 178.

SCL is used to program the contents of blocks. What blocks are, and how they are
created, is described in Chapters 5.3.1 “Block types” on page 125 and 6.3 “Program-
ming a code block” on page 183.

9.1.1 Programming with SCL in general

You use SCL to program the control function of the programmable controller – the
user program or control program. The user program is organized in different types
of blocks.

Fig. 9.1 shows the SCL program for a FIFO register. With a rising edge at #Write, this
block writes the value present at the #Input parameter into a FIFO register. With a
rising edge at #Read, the value at #Output is output again. The values are read out
in the order in which they were written into the register (FIFO, first in first out). The
register can be emptied using #Delete. The two displays #Full and #Empty show the
status of the register (#Full and #Empty are each set following writing or reading).
The block works with a write pointer and a read pointer.

The program editor constructs an SCL program line by line. You commence with the
first statement in the first line. Each SCL statement is concluded by a semicolon.
You can write several statements in one line, or one statement can occupy several
lines.

You can make the SCL program clearer and easier to read by using comments and
empty lines. Comments and empty lines have no influence on the function of the
SCL program.

Line comments commence with two slashes and terminate at the end of the line.
Block comments commence with left parenthesis and asterisk, can extend over sev-
eral lines, and terminate with asterisk and right parenthesis.

In order to program an SCL statement, use the keyboard to enter the statements in
a line of the input field. Dragging the statement with the mouse from the program

9.1 Introduction to programming with SCL

285

elements catalog is of advantage with SCL if you import functions with a parameter
list into your program. To call self-created blocks, drag the blocks from the Program
blocks folder in the project tree into a line.

Fig. 9.1 Example of a block with SCL program

9 Structured Control Language SCL

286

9.1.2 SCL statements and operators

The SCL program consists of a sequence of individual STL statements. Fig. 9.2
shows which types of SCL statements exist.

The simplest case with a Value assignment is that the content of a tag is transferred
to another tag. Control statements guide program execution, for example with pro-
gram loops. Block calls are used to continue program execution in the called block.

Operators

An expression represents a value. It can comprise a single address (a single tag) or
several addresses (tags) which are linked by operators.

Example: “a + b” is an expression; “a” and “b” are addresses, “+” is the operator.

The sequence of logic operations is defined by the priority of the operators and can
be controlled by parentheses. Mixing of expressions is permissible providing the
data types generated during calculation of the expression permit this.

SCL provides the operators specified in Table 9.1. Operators of equal priority are
processed from the left to the right.

Table 9.1 Operators with SCL

Operation Name Operator Priority

Parentheses Left parenthesis, right parenthesis (,) 1

Arithmetic Power ** 2

Unary plus, unary minus (sign) +, – 3

Multiplication, division *, /, DIV, MOD 4

Addition, subtraction +, – 5

Comparison Less than, less than-equal to, greater than,
greater than-equal to

<, <=, >, >= 6

Equal to, not equal to =, <> 7

Binary logic operation Negation (unary) NOT 3

AND logic operation AND, & 8

Exclusive OR XOR 9

OR logic operation OR 10

Assignment Assignment := 11

“Unary” means that this operator has a fixed assignment to an address

9.1 Introduction to programming with SCL

287

Fig. 9.2 Types of SCL statements

Label

Label

Label

Label

SCL statement

Variable

xxx

IF

CASE

FOR

WHILE

REPEAT

#Result

#Result

#Result

Statement sequence

Block name (parameter list)

Statement sequence

Variable := Block name (parameter list)

Statement sequence

Statement sequence

Statement sequence

Statement sequence

Expression

END_xxx

END_IF

END_CASE

END_FOR

END_WHILE

END_REPEAT

#Variable #VariableAND

#Variable #Variable>=

#Variable #Variable+

:=

:=

:=

:=

;

;

;

;

;

;

;

;

;

;

;

;

;

//

//

//

//

:

:

:

:

General SCL statement

Value assignment with assignment operator

Block call

Logical expression

IF branch

CASE branch

FOR loop

WHILE loop

REPEAT loop

Comparison expression

Arithmetic expression

Comment

Comment

Comment

Comment

SCL statement

Value assignment

Control statement

Block call

SCL statements

An SCL statement consists of a jump label with subsequent colon and the actual statement,
which is terminated by a semicolon. The statement can extend over several lines. The statement
can be followed by a (line) comment, which is commenced by two slashes and extends up to
the end of the line. The jump label (including colon) and the line comment can be omitted.

A value assignment transfers the value of an expression to a tag. An expression can be a single
tag or a formula for calculating a value. A formula links the tags by means of operators.
Depending on the type of logic operation, a distinction is made between arithmetic expressions,
comparison expressions, and logical expressions.

A control statement controls the processing sequence in the program by means of branching
and program loops which are processed repeatedly. A control statement begins with a keyword (xxx)
and is terminated by END_xxx.

The call of a block without return value consists of the block name and the following parameter list
in parentheses. If the block has a return value, the block call following an assignment operator
is present in a value assignment or an expression.

Most extended statements in the Program Elements catalog are calls of system blocks with
return value.

Control statement

9 Structured Control Language SCL

288

Expressions

An expression is a formula for calculating a value and consists of addresses (tags)
and operators. In the simplest case, an expression is an address, a tag, or a constant.
A sign or a negation can also be included.

An expression can consist of addresses that are linked together by operators.
Expressions can also be linked by operators. Expression can therefore have a very
complex structure. Parentheses can be used to control the processing sequence in
an expression.

The result of an expression can be assigned to a tag or a block parameter or used as
a condition in a control statement.

Expressions are distinguished according to the type of logic operation into arithme-
tic expressions, comparison expressions, and logic expressions.

9.2 Programming binary logic operations with SCL

The binary logic operations are executed in SCL with logic expressions in conjunc-
tion with binary tags or expressions which deliver a binary result. The binary oper-
ations can be “nested” using parentheses and thus influence the processing se-
quence (Table 9.2).

9.2.1 Scanning for signal states “1” and “0”

The scanning of a binary operand in SCL is always the direct scanning of the status
of the binary operand. This corresponds to scanning for signal state “1”. If scanning
for signal state “0” is required for the program function, one uses the NOT operator
in order to negate the result of scan. NOT can also be used to negate the result of
binary expressions.

Fig. 9.3 shows a sensor connected to the programmable controller which is scanned
for signal state “1” (left-hand side) and for signal state “0” (right-hand side). The
result of the scan is connected directly to a contactor.

Table 9.2 Binary logic operations with SCL

Operation Operand Function

&

AND

OR

XOR

Binary operand or binary
expression

Binary operand or binary
expression

Binary operand or binary
expression

Binary operand or binary
expression

Scan for signal state “1” and combination according to
AND logic operation

Scan for signal state “1” and combination according to
AND logic operation

Scan for signal state “1” and combination according to
OR logic operation

Scan for signal state “1” and combination according to
exclusive OR logic operation

NOT – Negation of result of logic operation

9.2 Programming binary logic operations with SCL

289

When scanning for signal state “1” (left-hand side), the result of the scan is equal to
the signal state of the sensor: if sensor S1 is open, input %I1.0 has the signal state
“0” and the logic operation is not fulfilled. Contactor C1 controlled by output %Q4.0
does not pull up. If sensor S1 is then activated, input %I1.0 has the signal state “1”.
The function is fulfilled, and the contactor C1 connected to output %Q4.0 pulls up.

When scanning for signal state “0” (right-hand side), the result of the scan is equal
to the negated signal state of the sensor: if sensor S2 is open, input %I1.1 has the
signal state “0”. The negation symbol negates this signal state, and the result of
the scan is “1”. The logic operation is thus fulfilled. Contactor C2 controlled by out-
put %Q4.1 pulls up. If sensor S2 is then activated, input %I1.1 has the signal state
“1”. The negation symbol negates the signal state, and the result of the scan is “0”.
The function is not fulfilled, and contactor C2 connected to output %Q4.1 does not
pull up.

9.2.2 Taking account of the sensor type for SCL

If you scan a sensor in your program, you must take into consideration whether it
is an NO or NC contact. Depending on the type of sensor, different signal states are
present at the corresponding input when the sensor is activated: “1” with an NO
contact and “0” with an NC contact. It is not possible for the control processor to
determine whether an NC or NO contact is connected to an input. It can only recog-
nize the signal state “1” or “0”.

Fig. 9.3 Scanning for signal states “1” and “0”

S1 S2

C1 C2C1 C2

S1 S2

%I1. 0 %I1. 1

%Q4.0 %Q4.1%Q4.0 %Q4.1

%I1. 0 %I1.1

“0”

“1”“1”

“1”“1”

“0”“0”

“0”

Scan for signal state “1” Scan for signal state “0”

Sensor
activated

Sensor
activated

%Q4.1 := NOT %I1.1; %Q4.1 := NOT %I1.1;%Q4.0 := %I1.0; %Q4.0 := %I1.0;

With SCL, a binary operand is always
scanned for signal state “1”.
The signal state of the binary operands
is integrated directly in the logic operation
(the assignment in the example).

The scan for signal state “0” is programmed using
the NOT negation. NOT negates the signal state of
the binary operand before it is adopted into the
logic operation (the assignment in the example).

http://pnap.ir/siemens-s71200-price-list/

9 Structured Control Language SCL

290

If you write the program to obtain “1” when a sensor is activated in order to link it
further, you must scan the input in different ways depending on the type of sensor.
The negation NOT is available for this purpose. Direct scanning delivers “1” if the
scanned input is also “1”. Together with the NOT negation, the scan then delivers
“1” if the scanned input is “0”. In this manner you can also directly scan inputs
which are to execute activities when the signal state is “0” (“zero-active”) and con-
nect the result of the scan further.

The example in Fig. 9.4 shows the programming dependent on the type of sensor.
The AND function used is then fulfilled, i.e. the function result has signal state “1”

Fig. 9.4 Taking account of the sensor type for SCL

Neither sensor is activated

Neither sensor is activated

Both sensor is activated

Both sensor is activated

The contactor
pulls up

S3

S5

S3

S5

S4

S6

S4

S6

C3

C4

C3

C4

%I1.2

%I1.4

%I1.2

%I1.4

%I1.3

%I1.5

%I1.3

%I1.5

%Q4.2

%Q4.3

%Q4.2

%Q4.3

“0”

“0” “0”

“0” “1”

“1”

“1”

“1”

“1”

“1”

“0”

“0”

Case 1: Both sensors are NO contacts

Case 2: The sensors are one NO contact and one NC contact

%Q4.3 := %I1.4 AND NOT %I1.5;%Q4.3 := %I1.4 AND NOT %I1.5;

%Q4.3 := %I1.4 AND %I1.5; %Q4.3 := %I1.4 AND %I1.5;

When actuated, an NO contact returns signal state “1”. If both sensors are actuated, both inputs
have signal state “1” and a scan result of “1” for a direct scan. The AND function is thus fulfilled
and the contactor at the output picks up."

The contactor
pulls up

When actuated, an NC contact returns signal state “0”. If both sensors are actuated, the NO contact
at the input has signal state “1” and the NC contact has signal state “0”. In order to get signal state “1”
when the NC contact is actuated, the scan result must be negated. Then, if both sensors are actuated,
the AND function is fulfilled and the contactor at the output picks up."

http://pnap.ir/siemens-s71200-price-list/

9.2 Programming binary logic operations with SCL

291

if the result of the scan “1” is present at all function inputs (for description, see
Chapter 9.2.3 „AND function“).

In the first case, two NO contacts are connected to the programmable controller, in
the second case one NO contact and one NC contact. In both cases, a contactor con-
nected to an output is to pull up when both sensors are activated. If an NO contact is
activated, the signal state at the input is “1” and is directly scanned so that the AND
function can be fulfilled when the sensor is activated. If both NO contacts are acti-
vated, the AND logic operation is fulfilled and the contactor pulls up.

When activating an NC contact, the signal state at the input is “0”. In order to
achieve scan result “1” in this case when activating the contact, it is necessary to
negate the scan result. Therefore, in the second case, the NO contact must be
scanned directly and the NC contact must be scanned with the negation NOT in
order for the contactor to pull up when both sensors are activated.

9.2.3 AND function

An AND function is fulfilled and provides the result “1” (TRUE) if all function inputs
have the scan result “1”. A description of the AND function is provided in Chapter
10.1.5 “AND function, series connection” on page 331.

SCL implements the AND logic operation using a logic expression with the opera-
tors & or AND, which link binary tags or binary expressions.

Fig. 9.5 shows an example of an AND logic operation with three inputs. The tags
“Input 1” and “Input 2” are scanned directly. The scan result of the tag “Input 3” is
negated. All three scan results are linked according to an AND logic operation. The
AND function is fulfilled if “Input 1” and “Input 2” have signal state “1” and “Input 3”
has signal state “0”.

9.2.4 OR function

An OR function is fulfilled and provides the result “1” (TRUE) if one or more func-
tion inputs have scan result “1”. A description of the OR function is provided in
Chapter 10.1.6 “OR function, parallel connection” on page 332.

SCL implements the OR logic operation using a logic expression with the operator
OR, which links binary tags or binary expressions.

Fig. 9.5 Examples of binary logic operations with SCL

9 Structured Control Language SCL

292

Fig. 9.5 shows an example of an OR logic operation with three inputs. The tags
“Input 1” and “Input 2” are scanned directly. The scan result of the tag “Input 3” is
negated. All three scan results are linked according to an OR logic operation. The
OR function is fulfilled if “Input 1” or “Input 2” has signal state “1” or “Input 3” has
signal state “0”.

9.2.5 Exclusive OR function

An exclusive OR function (antivalence function) is fulfilled and provides the result
“1” (TRUE) if an odd number of function inputs have scan result “1”. A description
of the exclusive OR function is provided in Chapter 10.1.7 “Exclusive OR function,
non-equivalence function” on page 333.

SCL implements the exclusive OR logic operation using a logic expression with the
operator XOR, which links binary tags or binary expressions.

Fig. 9.5 shows an example of an exclusive OR logic operation with two inputs. The
tags “Input 1” and “Input 2” are scanned directly. The scan results are linked accord-
ing to an exclusive OR logic operation. The exclusive OR function is fulfilled (it sup-
plies the value TRUE) if the signal states at “Input 1” and “Input 2” are different.

9.2.6 Combined binary logic operations

The AND, OR, and exclusive OR functions can be freely combined with one another.
With SCL the operators have the following priority regarding execution: AND or &
are executed before XOR, followed by OR. NOT is executed before the logic opera-
tion operators.

Logic operations such as the ORing of AND functions do not require parentheses, as
shown in the top example in Fig. 9.6. The first AND function is fulfilled if “Input 1”
and “Input 2” have signal state “1”; the second AND function is fulfilled if “Input 3”
and “Input 4” have signal state “1”. The tag “Output 4” is set if the first AND function
is fulfilled, or if the second AND function is fulfilled, or if both are fulfilled.

Fig. 9.6 Examples of combined binary logic operations with SCL

9.2 Programming binary logic operations with SCL

293

This logic operation does not require parentheses since the AND function is pro-
cessed “before” the OR function because of its higher priority. The processing pri-
ority can be influenced using parentheses. The expressions in the parentheses are
processed first as it were. Parentheses can be nested.

Logic operations such as the ANDing of OR functions require parentheses, as shown
in the following example in Fig. 9.6. The first OR function is fulfilled if “Input 1”, or
“Input 2”, or both tags have signal state “1”; the second OR function is fulfilled if
“Input 3”, or “Input 4”, or both tags have signal state “1”. Both OR functions are pres-
ent in parentheses and their results of logic operation are linked according to an
AND logic operation. The “Output 5” tag is set if both OR functions are fulfilled. The
logic operation of exclusive OR functions according to an OR logic operation (last
example in Fig. 9.6) also does not require parentheses. However, parentheses can
be used for reasons of clarity.

9.2.7 Negating the result of logic operation

The NOT operator negates the result of logic operation at any position in an logic
operation. Using the NOT operator it is possible in a simple manner to obtain:

b a NAND function (negated AND function, is fulfilled if at least one input has
the result of scan “0”),

b a NOR function (negated OR function, is fulfilled if all inputs have the result
of scan “0”), and

b an inclusive OR function (equivalence function, negated exclusive OR function,
is fulfilled if an even number of inputs has the result of scan “1”).

Fig. 9.7 shows the negation of binary functions. The functions are present in paren-
theses since they have a lower processing priority than NOT. First the result of the
binary function is generated in parentheses and then it is negated and assigned to
the output tag.

Fig. 9.7 Examples of the negation of binary functions

9 Structured Control Language SCL

294

9.3 Programming memory functions with SCL

The memory functions control binary tags such as outputs or bit memories. SCL has
value assignment as a memory function, which directly imports the result of logic
operation of the expression. The set and reset functions, which are only performed
if the result of logic operation is “1”, can be emulated.

9.3.1 Value assignment of a binary tag

The value assignment assigns the result of logic operation of the expression to the
right of the assignment operator to the binary tag on the left. The response of the
assignment is described in Chapter 10.2.2 “Simple and negated coil, assignment”
on page 334.

An example of a (binary) value assignment is shown in Fig. 9.8. Here, if the logic
operation is fulfilled and both tags “Input 1” and “Input 2” have the same signal sta-
tus, the tag “Output 1” is set to signal state “1”, and if the logical operation is not
fulfilled, to signal state “0”. If an assignment should be carried out negated, use the
negation NOT to negate the signal state of the expression.

9.3.2 Setting and resetting

With SCL, the setting and resetting on signal state “1” can be emulated, for example
with a simple IF branch.

In Fig. 9.8, the tag “Output 3” is set to signal state “1” (value TRUE) if the AND logic
operation from “Input 3” and “Input 4” is fulfilled (supplies the value TRUE). If the
AND logic operation is not fulfilled (if it has the value FALSE), “Output 3” is not
affected. Resetting of “Output 3” is carried out in a similar manner: If the expression
“Input 5” OR “Input 6” is fulfilled (supplies the value TRUE), “Output 3” is set to sig-
nal state “0” (FALSE). An expression which is not fulfilled does not influence “Output
3”. Resetting is programmed following setting and is therefore “dominant”. If both
conditions are fulfilled, “Output 3” is reset or remains reset.

Fig. 9.8 Assigning, setting, and resetting with SCL

9.3 Programming memory functions with SCL

295

9.3.3 Edge evaluation

Edge evaluation detects a change in a binary signal state.

With SCL, a change in signal state can be detected by comparing the current signal
state with the previous one. The previous signal state is saved in a so-called edge
trigger flag. This is, for example, a bit from the bit memories or data operand area.
After the evaluation, the signal state of the edge trigger flag must be updated to the
signal state of the input signal, otherwise an edge will be detected again the next
time the program runs.

Either the statements dependent on a signal change are found directly at the edge
evaluation or the information about a detected signal change is saved in a bit mem-
ory, the “pulse flag”. Its signal state may be scanned at any point in the user pro-
gram.

Fig. 9.9 shows various types of edge evaluation. A rising edge is present if the input
signal (in the first example “Input 1”) has signal state “1” and the edge trigger flag
(in the first example “Edge 1”) has signal state “0”. Then the statements after THEN
are processed. The signal state of the edge trigger flag is then updated.

The second example shows the evaluation of a falling edge. The last two examples
use a pulse flag (this can be a bit memory or a data bit) to respond to the edge at
another point in the program.

Fig. 9.9 Examples of edge evaluation with SCL

9 Structured Control Language SCL

296

9.4 Programming timer and counter functions
with SCL

9.4.1 IEC timer functions

You can use the timer functions to implement timing processes in the user
program such as waiting and monitoring times, measurement of a time interval, or
the generation of pulses. A detailed description of the IEC timer functions is pro-
vided in Chapter 10.4 “Time functions” on page 344.

A timer function can be started with one of the four behavior patterns TP, TON, TOF,
and TONR. A timer function requires internal data for each application. You can
specify where this data is to be saved when programming: For the Single instance
entry in its own data block with the data type IEC_TIMER and for the Multi-instance
entry in the instance data block of the calling function block with a data type that
depends on the behavior of the timer function (TP_TIME, TON_TIME, TOF_TIME,
TONR_TIME). You address a timer function with the name of the instance data – data
block or local data.

For programming, drag the corresponding symbol (TP, TON, TOF, or TONR) with
the mouse from the program elements catalog under Basic instructions > Timers
into a line on the working area. When positioning, you select either as single
instance or as local instance. The instance data block generated automatically when
selecting as a single instance is saved in the project tree under Program blocks > Sys-
tem blocks > Program resources.

With the IEC timer functions, a binary tag must be connected to the IN input, and a
duration to the PT input. You can also directly access the output parameters using
the instance data, for example with “DB_name”.Q for a single instance or
#Instance_name.Q for a local instance.

Fig. 9.10 shows the two timer functions #Timer_on and #Timer_off, which were pro-
grammed as local instance. Five seconds after switching on with the signal “Switch
on fan”, the “Fan drive” tag is set to signal state “1” and remains set for 10 seconds,
determined by the timer function #Timer_off started as OFF delay. The time status
can either be scanned on the start operation of the timer function or with the com-
ponent Q at another point in the user program.

Fig. 9.10 Example of IEC timer functions with SCL

9.4 Programming timer and counter functions with SCL

297

9.4.2 IEC counter functions

A counter function implements counting processes in the user program. A counter
function can count up and down; the numerical range depends on the data type of
the preset value. The data types USINT, UINT, UDINT, SINT, INT and DINT are avail-
able.

The counting frequency of a counter function depends on the execution time of the
user program. In order to count, the CPU must recognize a change in the signal
state of the input pulse, i.e. the input pulse and the pause must be present for at
least one program cycle. The longer the program execution time, the lower the
counting frequency. A detailed description of the counter functions is provided in
Chapter 10.5 “Counter functions” on page 349.

A counter function can be controlled with one of the three behavior patterns CTU,
CTD, and CTUD. A counter function requires internal data for each application. You
can specify where this data is to be saved when programming: by specifying Single
instance for storage in a separate data block, and by specifying Multi-instance for
storage in the instance data block of the calling function block.

The data type of a counter function is based on the data type of the count value. If,
for example, an up-counter (CTU) with a DINT count value is programmed as a sin-
gle instance, the data type IEC_DCOUNTER is taken as a basis for the data block (see
Chapter 4.8.2 “IEC_COUNTER system data type” on page 112); as a local instance,
the counter function has the data type CTU_DINT (see Chapter 4.6.2 “Parameter
types for IEC counter functions” on page 108). You address the counter function
with the name of the instance data – data block or local data.

For programming, drag the corresponding symbol (CTU, CTD, or CTUD) with the
mouse from the program elements catalog under Basic instructions > Counters into
a line on the working area. When positioning, you select either as single instance or
as local instance. The instance data block generated automatically when selecting
as a single instance is saved in the project tree under Program blocks > System blocks
> Program resources.

The data type of the counter function is set with a click on the instance name (the
green box). With the IEC counter functions, a binary tag must be connected to at
least one counter input (CU or CD). Connection of the other function inputs and out-
puts is optional. You can also directly access the output parameters using the
instance data, for example with “DB_name”.QD for a single instance or
#Instance_name.QD for a local instance.

Fig. 9.11 shows the counter function #Lock_counter, which is called as a local
instance. It has saved its data in the instance data block of the calling function block.
A component of the counter can be addressed globally with the name of the
instance and the component name, for example #LockCounter.CV. The example
shows the passages through a lock, either forward or backward.

9 Structured Control Language SCL

298

9.5 Programming digital functions with SCL

The digital functions process digital values mainly with the data types for fixed-
point and floating-point numbers.

The “simple” digital functions are implemented with SCL through the value assign-
ment of an expression. When linking two values, the type of digital function
depends on the operator used: comparison expression (comparison functions),
arithmetic expression (arithmetic and mathematical functions), or logic expres-
sion (e.g. word logic operations). The functions for data type conversion (conver-
sion functions) and for shifting and rotating are available for manipulating just one
value.

9.5.1 Transfer function, value assignment of a digital tag

The “simple” transfer function corresponds with SCL to the value assignment.

Both sides of the value assignment must have a “tolerable” data type that is either
automatically adapted (see Chapter 4.3.2 “Implicit data type conversion” on page

Fig. 9.11 Example of a counter function with SCL

Fig. 9.12 Examples of transfer and conversion functions with SCL

9.5 Programming digital functions with SCL

299

93) or must be converted using a program with conversion functions (see Chapter
11.6 “Conversion functions (Conversion of data type)” on page 376).

A detailed description of the transfer functions is provided in Chapter 11.1 “Trans-
fer functions” on page 356. Fig. 9.12 shows some examples of value assignments:
The constant value 123 is assigned to the #var_int tag. The #Quantity tag imports the
value of the #var_int tag. A value in INT data format can be assigned to a tag with
data type DINT or REAL, where SCL “implicitly” converts the data type. If no implicit
data type conversion is possible, a conversion function must be programmed.

9.5.2 Conversion functions

The conversion functions convert the data formats of tags and expressions. SCL can
“automatically” convert data types if no information can be lost during conversion
(see also Chapter 4.3.2 “Implicit data type conversion” on page 93). In all other
cases, the (explicit) conversion functions must be used.

A detailed description of the conversion functions is provided in Chapter 11.6 “Con-
version functions (Conversion of data type)” on page 376. Table 9.3 shows the con-
version functions available with SCL. When inserting the CONVERT function, the
data types involved in the conversion are selected in a dialog box.

The program elements catalog contains the conversion functions under Basic
instructions > Converters.

Fig. 9.12 on page 298 shows examples of simple and “nested” conversion functions
where the #Measurement_display tag has the data type DWORD.

Table 9.4 shows the data type conversions possible with SCL. There are also the con-
versions WORD_TO_BLOCK_DB and BLOCK_DB_TO_WORD. If the permissible
numerical range is left during a conversion, the block-internal ENO tag is set to
FALSE, and the result of the conversion is invalid.

Table 9.3 Conversion functions with SCL

Operation Function Data type selection with CONVERT

CONVERT Data type conversion

ROUND Data type conversion from REAL to DINT
with rounding to the next integer

CEIL Data type conversion from REAL to DINT
with rounding to the next higher integer

FLOOR Data type conversion from REAL to DINT
with rounding to the next lower integer

TRUNC Data type conversion from REAL to DINT
without rounding

9 Structured Control Language SCL

300

9.5.3 Comparison functions

A comparison function is implemented with a comparison expression in SCL.

A comparison expression compares the values of two tags or expressions using a
comparison operator. The comparison result has the data type BOOL and can be
linked further like a Boolean tag. The comparison result has signal state TRUE if the
comparison is fulfilled, otherwise FALSE. The comparison function is described in
Chapter 11.2 “Comparison functions” on page 364. Table 9.5 shows the comparison
operators available with SCL.

Table 9.4 Data type conversion with SCL

to

from B
O

O
L

B
Y

TE

W
O

R
D

D
W

O
R

D

U
SI

N
T

U
IN

T

U
D

IN
T

SI
N

T

IN
T

D
IN

T

R
EA

L

LR
EA

L

TI
M

E

TO
D

D
A

TE

D
TL

C
H

A
R

ST
R

IN
G

B
C

D
1

6

B
C

D
3

2

BOOL x x x W W W W W W

BYTE x x x x x x x x x T T T x

WORD x x x x x x x x x T T T x

DWORD x x x x x x x x x x T T

USINT x x x x x x x x x x x x S

UINT x x x x x x x x x x x T T T x S

UDINT x x x x x x x x x x x T x S

SINT x x x x x x x x x x x T x S

INT x x x x x x x x x x x T x S x

DINT x x x x x x x x x x x T T T x S x

REAL x x x x x x x x S

LREAL x x x x x x x x S

TIME T T T

TOD T T T

DATE T T T T T T T T

DTL T T

CHAR x x x x x x x x x S

STRING S S S S S S S S S

BCD16 x

BCD32 x

Data type conversion is possible:X With CONVERT
S with S_CONV
T with T_CONV
W By programmed conversions (example: BOOL_TO_INT)

9.5 Programming digital functions with SCL

301

In Fig. 9.13 on page 302, a measured value #Measurement_temperature is com-
pared with an upper and a lower limit. The tags #Measurement_too_high and
#Measurement_too_low are controlled depending on the comparison result.
Resetting occurs at a distance from the upper or lower limit (#Hysteresis tag).

9.5.4 Arithmetic functions

The arithmetic functions implement the basic arithmetic operations with the data
formats for fixed-point and floating-point numbers as well as with time values. SCL
uses arithmetic expressions with an arithmetic operator for this purpose.

Table 9.5 Comparison functions with SCL

Operator Description Operand data types

=
<>
<
<=
>
>=

Compare for equal
Compare for unequal
Compare for greater than
Compare for greater than-equal
Compare for less than
Compare for less than-equal

USINT, UINT, UDINT, SINT, INT, DINT,
REAL, LREAL,
CHAR, STRING,
TIME, DATE, TIME_OF_DAY (TOD), DTL

=
<>

Compare for equal
Compare for unequal

BOOL, BYTE, WORD, DWORD

Table 9.6 Arithmetic operators with SCL

Data type *)

Operator Description 1st operand 2nd operand Result

** Power Fixed point, floating point Fixed point, floating point Fixed point, floating point

* Multiplication Fixed point, floating point Fixed point, floating point Fixed point, floating point

TIME Fixed point TIME

/ Division Fixed point, floating point Fixed point, floating point Fixed point, floating point

DIV Integer
division

Fixed point, floating point Fixed point, floating point Fixed point, floating point

TIME Fixed point TIME

MOD Division with
remainder
as result

Fixed point Fixed point Fixed point

+ Addition Fixed point, floating point Fixed point, floating point Fixed point, floating point

TIME TIME TIME

TOD TIME TOD

DTL TIME DTL

– Subtraction Fixed point, floating point Fixed point, floating point Fixed point, floating point

TIME TIME TIME

TOD TIME TOD

DATE DATE TIME

TOD TOD TIME

DTL TIME DTL

DTL DTL TIME

*) Fixed point = USINT, UINT, UDINT, SINT, INT, DINT; floating point = REAL, LREAL

9 Structured Control Language SCL

302

You can find a detailed description of these arithmetic functions in Chapters 11.3
“Arithmetic functions for numerical values” on page 366 and 11.4 “Arithmetic func-
tions for time values” on page 369. Table 9.6 shows the arithmetic operators avail-
able with SCL with the allowed data types.

The tags or expressions linked to an arithmetic function can have fixed-point, float-
ing-point or time value data types. If different data types can be matched in the con-
text of implicit data type conversion (see Chapter 4.3.2 “Implicit data type conver-
sion” on page 93), a programmed function for (explicit) data type conversion can be
dispensed with. The result of an arithmetic function has the “most powerful” of the
involved data types. If, for example, you link an INT or DINT tag with a REAL tag, the
result is of data type REAL.

In the case of a division, the second operand must not be zero.

In Fig. 9.13, the upper limit of a measured value is monitored under the header
“Comparison expressions”. A hysteresis is introduced to ensure that the #Measure-
ment_too_high and #Measurement_too_low messages do not “pulsate” when the
measurement changes rapidly around the upper or lower limit. The messages are
only canceled when the measured value has dropped again below the upper limit
or risen again above the upper limit by the magnitude of the hysteresis.

There are several calculation examples under the heading “Arithmetic expres-
sions”: the calculation of reactive electric power, the volume calculation of a ball,
one of the solutions of a quadratic equation, and the formation of an arithmetic
mean value.

Fig. 9.13 Examples of comparison expressions, arithmetic and logical expressions

9.5 Programming digital functions with SCL

303

9.5.5 Mathematical functions

The mathematical functions comprise the trigonometric functions, exponential
functions, and logarithmic functions, and deliver a result in floating-point data for-
mat. The input tag can have any data type that can be converted into the data type
of the output tag using the implicit data type conversion. A detailed description of
these math functions is provided in Chapter 11.5 “Mathematical functions” on page
372. Table 9.7 shows the mathematical functions available with SCL.

Under the heading “Arithmetic expressions”, Fig. 9.13 provides several examples of
the mathematical functions SIN, SQR, and SQRT.

9.5.6 Word logic operations

The word logic operations apply the binary operations AND, OR, and XOR to each
bit of a byte, word, or doubleword. SCL uses logic expressions for this.

A detailed description of the word logic operations is provided in Chapter 11.8.2
“Word logic operations (AND, OR, XOR)” on page 392. Table 9.8 shows the word
logic operations available with SCL.

Fig. 9.13 on page 302 shows how you can program 32 edge evaluations simulta-
neously for rising and falling edges. The message bits are collected in a double-
word Messages, which is present in data block “Data.90”. The edge trigger flags
Messages_EM are also present in this data block. If the two doublewords are linked
by an XOR logic operation, the result is a doubleword in which each set bit rep-
resents a different assignment of Messages and Messages_EM, in other words: the
associated message bit has changed.

Table 9.7 Math functions with SCL

Operation Function Operation Function

SIN
COS
TAN

Calculate sine
Calculate cosine
Calculate tangent

ASIN
ACOS
ATAN

Calculate arcsine
Calculate arccosine
Calculate arctangent

SQR
SQRT

Generate square
Extract square root

EXP
LN

Generate exponential function to base e
Generate Napierian logarithm (to base e)

Table 9.8 Word logic operations with SCL

Operation Operand data types Function

AND, &
OR
XOR

BOOL, BYTE, WORD, DWORD
BOOL, BYTE, WORD, DWORD
BOOL, BYTE, WORD, DWORD

AND logic operation
OR logic operation
Exclusive OR logic operation

NOT BOOL, BYTE, WORD, DWORD Negation

9 Structured Control Language SCL

304

In order to obtain the positive signal edges, the changes are linked to the mes-
sages by an AND logic operation. The bit is set for a rising signal edge wherever
the message has a “1” and the change a “1”. This corresponds to the pulse flag of
the edge evaluation. If you do the same with the negated message bits – the mes-
sage bits with signal state “0” are now “1” – you obtain the pulse flags for a falling
edge. At the end it is only necessary for the edge trigger flags to track the mes-
sages.

9.5.7 Shift functions

A shift function shifts the content of a tag bit-by-bit to the left or right. A detailed
description of the shift functions is provided in Chapter 11.7 “Shift functions” on
page 389. Table 9.9 shows the shift functions available with SCL.

The program elements catalog contains the shift functions under Basic instructions
> Shift and rotate.

In Fig. 9.14 the tags #Quantity_high and #Quantity_low are available as positive
numbers in BCD16 format. They contain three digit decades and in the highest
decade the sign in each case (here the value zero). The digits of both numbers are
combined into a single number in the #Quantity_display tag. In addition, the
#Quantity_high tag is shifted 12 bits to the left (corresponds to three decades) and
linked according to an OR operation with the #Quantity_low tag.

Table 9.9 Shift functions with SCL

Operation Data types IN Data type N Function

SHR (IN, N)
SHL (IN, N)

BYTE, WORD, DWORD
BYTE, WORD, DWORD

INT, DINT
INT, DINT

Shift to right
Shift to left

ROR (IN, N)
ROL (IN, N)

BYTE, WORD, DWORD
BYTE, WORD, DWORD

INT, DINT
INT, DINT

Rotate to right
Rotate to left

Fig. 9.14 Example of the shift function with SCL

9.6 Controlling the program flow with SCL

305

9.6 Controlling the program flow with SCL

You can influence processing of the user program by means of the program flow
control functions. You can recognize errors in program execution by using the ENO
tag, the control statements permit you to create program branches, and the block
functions allow you to call and terminate blocks.

9.6.1 Working with the ENO tag

The programming language SCL offers a pre-defined tag named ENO with data type
BOOL, i.e. ENO is not declared by the user but is always present. This block-local tag
shows FALSE to indicate an error in process execution in an SCL block.

In order to use automatic error detection with the ENO tag, the block attribute Set
ENO automatically must be activated. When compiling the block, additional code is
generated for controlling ENO. You activate the block attribute Set ENO automati-
cally in the properties of the SCL block under Attributes.

Error analysis with ENO

At the block start, the ENO tag is always TRUE. ENO is set to FALSE if a called block
signals an error or following faulty execution of an arithmetic expression or con-
version function. Every error in the further block program also sets ENO to FALSE:
ENO is used as a group error message for program execution in a block.

You can scan the ENO tag at any time:

#Total := #Total + #New_value;

IF NOT ENO //Scan ENO

THEN (* faulty addition *);

END_IF;

In this program, the THEN branch is even executed if faulty program execution took
place prior to the addition which ENO also set to FALSE.

You can assign a value to the ENO tag at any time. If you only wish to check the cor-
rect execution of the addition (always assuming that a block attribute Set ENO auto-
matically is activated), you can also program:

ENO := TRUE; //Set ENO

#Total := #Total + #New_value;

IF ENO //Scan ENO

THEN (* no error occurred *);

ELSE (* faulty addition *);

END_IF;

You can also use the ENO tag independent of the block attribute Set ENO automati-
cally, for example as a group error message:

IF (* error detected *)

THEN ENO := FALSE; RETURN; //Reset ENO and exit block

END_IF;

9 Structured Control Language SCL

306

When exiting the block, the value of the ENO tag is automatically assigned to the
enable output ENO of the block.

Error evaluation following a block call

A block call can control the ENO tag via the enable output ENO. If the enable output
is FALSE (this is the case if an error has occurred in the called block or if the ENO tag
has been set to FALSE in the called block by the user), the “block-local” ENO tag is
also set to FALSE in the current block.

"Block" (In1 := ..., In2 := ...);

IF NOT ENO THEN (* an error has occurred up to here *);

END_IF;

An error signaled by the called block – as well as previous errors – sets the “block-
local” ENO tag to FALSE. If you wish to scan an error signal by the called block inde-
pendent of a previous error, use the enable output ENO:

"Block" (In1 := ..., In2 := ..., ENO => #OK);

IF NOT #OK THEN (* error in block *); END_IF;

The “block-local” ENO tag is not set to FALSE if the called block has not been pro-
cessed via the enable input EN (with EN equal to FALSE).

9.6.2 EN/ENO mechanism with SCL

The EN/ENO mechanism is based on the enable input EN and enable output ENO. EN
and ENO are implicitly defined parameters with a block call. EN is permissible for
function blocks (FB), ENO for all block types (even system blocks) which can be
called. EN and ENO are not displayed by the program editor in the offered template.

EN is the first parameter in the parameter list, ENO the last. Use of these parameters
is optional. If you do not require these parameters, simply omit them.

The EN/ENO mechanism is only supported in SCL if the block attribute Set ENO auto-
matically is activated.

Enable input EN

You can control the calling of a block using the enable input EN. If EN is TRUE or not
used, the called block is processed. If EN is FALSE, the called block is not processed.
You use the enable input EN in the parameter list like an input parameter:

"Block"(EN := #Enable, In1 := ..., In2 := ...);

(* "Block" is only processed if #Enable = TRUE *)

You can use the enable input to implement a conditional block call, which depends on
the value of a binary tag or binary expression.

Enable output ENO

You can scan the error status of the block using the enable output ENO. If ENO is
TRUE, processing has been carried out correctly. If FALSE, the ENO output signals

9.6 Controlling the program flow with SCL

307

that an error is present in the block. You can scan the state of the ENO output in the
parameter list using a tag:

"Block" (In1 := ..., In2 := ..., ENO => #OK);

(* With error-free processing, #OK has the value TRUE *)

If the called block signals an error, this is transferred to the block-local ENO tag:

"Block" (In1 := ..., In2 := ..., ENO => #OK);

#No_error := ENO;

IF NOT #OK THEN (* error in block *); END_IF;

IF NOT #No error THEN (* group error message *); END_IF;

The #OK tag is FALSE if block processing was faulty. The #No_error tag is FALSE if
block processing was faulty or if an error was already present prior to the block call.

If a function block with EN = FALSE is not processed, this has no influence on the
“block-local” ENO tag. However, the ENO output is set to FALSE.

"Block"(EN := #Enable, ... , ENO => #OK);

#No_error := ENO;

If the #Enable tag is FALSE, the #OK tag is FALSE and the #No_error tag remains
uninfluenced at its “old” value.

If you wish to use the EN/ENO mechanism to switch more block calls “in series”, you
can program it as follows:

"Block1"(EN := #Enable, ... , ENO => #OK);

"Block2"(EN := #OK, ...);

“Block2” is not processed if #Enable is FALSE or if an error has occurred in “Block1”.

Fig. 9.15 provides a summary of how the enable output ENO and the ENO tag are
controlled with a block call.

9.6.3 Control statements

The control statements control program branches and loops depending on a condi-
tion. The following control statements are used with SCL:

b IF Program branch depending on BOOL value

b CASE Program branch depending on INT value

b FOR Program loop with a loop-control tag

b WHILE Program loop with a feasibility condition

b REPEAT Program loop with an abort condition

b CONTINUE Abort current loop

b EXIT Leave the program loop

Note: Make sure when using program loops that the cycle monitoring time is not
exceeded.

9 Structured Control Language SCL

308

IF statement

The IF statement processes a statement block depending on a Boolean value. Fig.
9.17 shows the principle of operation and the variants of the IF statement.

Example in Fig. 9.16: If the #Actual_value tag is greater than the #Setpoint tag, the
statements following THEN are processed. Otherwise the comparison for #Actu-
al_value less than #Setpoint is carried out and, if fulfilled, processing of the state-
ments following ELSIF is carried out. If neither of the two comparisons is fulfilled,
the statements following ELSE are processed.

CASE statement

You can use the CASE statement to process one or more sequences of statements
depending on a fixed-point value. Fig. 9.18 shows the principle of operation of the
CASE statement.

Fig. 9.15 Schematic for setting of enable output ENO and the ENO tag

Is EN used?

YES NO

Is EN = TRUE? Block/function being processed

YES NO

Block/function being processed Block/function not
being processed

Has an error occurred? Has an error occurred?

YES NO YES NO

Tag at the ENO out-
put is set to FALSE

Tag at the ENO out-
put is set to TRUE

Tag at the ENO out-
put is set to FALSE

Tag at the ENO out-
put is set to FALSE

Tag at the ENO out-
put is set to TRUE

“Block-local” ENO
tag is set to FALSE

“Block-local” ENO
tag remains
unchanged

“Block-local” ENO
tag remains
unchanged

“Block-local” ENO
tag is set to FALSE

“Block-local” ENO
tag remains
unchanged

Fig. 9.16 Example of an IF statement

9.6 Controlling the program flow with SCL

309

Fig. 9.17 Principle of operation of the IF branch

Simple IF branch

Nested IF branch

Control statement IF

IF <Condition>
THEN <Statements>;

END_IF;

IF <Condition>
THEN <Statements1>;
ELSE <Statements2>;

END_IF;

IF <Condition1>
THEN <Statements1>;
ELSIF <Condition2>

THEN <Statements2>;
ELSE <Statements3>;

END_IF;

IF

IF

IF

ELSIF

END_IF

END_IF

END_IF

Statements

<Statements1>

<Statements1><Statements2>

<Statements2>

<Statements3>

<Condition>

<Condition>

<Condition1>

<Condition2>

THEN

THEN

THENTHEN

ELSE

ELSE

The control statement IF processes a program section <Statements> depending on a Boolean value
<Condition>. <Condition> can be a binary tag or an expression with a Boolean result.

If <Condition> has the value TRUE, the instruction
block following THEN is processed.

If <Condition> has the value FALSE, processing of
the program is continued following END_IF.

IF branch with ELSE

If <Condition> has the value TRUE, the instruction
block following THEN is processed.

If <Condition> has the value FALSE, the instruction
block following ELSE is processed.

A further condition is scanned by ELSIF … THEN
if the preceding condition is not fulfilled.

The ELSIF … THEN instruction can be inserted cascaded:
An ELSIF scan can again follow ELSIF … THEN.

ELSE and the subsequent statements can also be
omitted.

http://pnap.ir/siemens-s71200-price-list/

9 Structured Control Language SCL

310

Selection is an operand or expression with a fixed-point data type. If Selection has
the value of Range1, the Statements1 are processed and then the program execution
continues after END_CASE. If Selection has the value of Range2, the Statements2 are
processed, etc.

If no value corresponding to the selection is present in the list of values, the State-
ments0 following ELSE are processed. The ELSE branch can also be omitted.

The list of values with Range1, Range2, etc. consists of fixed-point constants.

Various expressions are possible for a component in the list of values:

b A single fixed-point number

b A range of fixed-point numbers (e.g. 15..20)

b A list of fixed-point numbers and fixed-point numerical ranges
(e.g. 21,25,30..33).

Each value must only be present once in the list of values.

Fig. 9.18 Principle of operation of the CASE branch

Fig. 9.19 Example of CASE statement

Control statement CASE

CASE <Selection> OF

...
ELSE : <Statements0>;

END_CASE;

<Range2> : <Statements2>;

CASE

END_CASE

Statements1Statements0 Statements2 ...

<Selection>

<Range1>ELSE <Range2> ...

The control statement CASE processes a program section <Statements> depending on whether
an integer value <Selection > is within a <Range>. <Range> can be a constant, a fixed range
of values, or a list of constants and fixed value ranges.

<Range1> : <Statements1>;

http://pnap.ir/siemens-s71200-price-list/

9.6 Controlling the program flow with SCL

311

CASE statements can be nested. A CASE statement can be present instead of a state-
ment block in the selection table of a CASE statement.

Example in Fig. 9.19: A value is assigned to the #Error_number tag depending on the
assignment of the #ID tag.

FOR statement

Using the FOR statement, a program loop is repeatedly processed as long as a loop-
control tag is within a defined range of values. Fig. 9.20 shows the principle of oper-
ation of the FOR statement.

A <Start value> is assigned to the #Loop-control tag in the start assignment. You
define the loop-control tag yourself; it must be a tag with data type SINT, INT, or
DINT. <Start value> is any expression with the data type SINT, INT, or DINT, as are
<End value> and <Increment>.

#Loop-control tag if set to the start value at the beginning of loop processing. The
end value and increment are calculated at the same time and “frozen” (a change in
these values during loop processing has no effect on the processing of the loop).
The abort condition is subsequently scanned and – if it is not fulfilled – the program
loop is processed.

Each time the loop is executed, #Loop-control tag is increased by one increment
(with positive increment) or decreased by one increment (with negative incre-
ment). Specification of BY Increment can be omitted; +1 is then used as the incre-
ment. If #Loop-control tag is outside the range of start value and end value, program
execution is continued following END_FOR.

Fig. 9.20 Principle of operation of the FOR loop

Control statement FOR

DO <Statements>;
END_FOR;

FOR

END_FOR

<Statements>

Loop-control :=
Start value

Loop-control <=
End value ?

Loop-control :=
Loop-control +

Increment

DO

The control statement FOR processes a program section <Statements> for as long as a
#Loop-control tag is within a range of values. The range of values is defined by a <Start value>,
an <Increment>, and an <End value>.

FOR #Loop-control := <Start value> TO <End value> BY <Increment>

http://pnap.ir/siemens-s71200-price-list/

9 Structured Control Language SCL

312

The last execution of the loop is carried out with the end value or with the value
<End value> minus <Increment> if the end value is not reached exactly. Following
a completely executed program loop, the loop-control tag has the value of the last
loop plus <Increment>.

FOR loops can be nested: Further FOR loops with other loop-control tags can be pro-
grammed within the FOR loop. The current program execution can be aborted in
the FOR loop using CONTINUE; EXIT terminates the complete FOR loop processing.

Example in Fig. 9.21: In a #Current data field with 16 components, the maximum
value is searched for. In the FOR loop, the index tag #Index runs through the values
1 to 16. On each cycle, a field component #Current[#Index] is compared with the
already saved value #MaxValue. If #MaxValue is smaller, the value of the component
#Current[#Index] is imported.

WHILE statement

The WHILE statement is used to repeatedly process a program loop for as long as a
feasibility condition is fulfilled. Fig. 9.22 shows the principle of operation of the
WHILE statement.

<Condition> is an operand or expression with data type BOOL. The statements fol-
lowing DO are repeatedly processed for as long as <Condition> is TRUE.

Fig. 9.21 Example of the FOR statement

Fig. 9.22 Principle of operation of the WHILE loop

Control statement WHILE

WHILE <Condition>
DO <Statements>;

END_WHILE;

WHILE

DO

END_WHILE

StatementsCondition ?

The control statement WHILE processes a program section <Statements> for as long as a
<Condition> is fulfilled. <Condition> is a binary tag or an expression with binary result.

9.6 Controlling the program flow with SCL

313

<Condition> is scanned prior to each loop processing. If the value is FALSE, pro-
gram execution is continued following END_WHILE. This can also already be the
case prior to the first loop (the statements in the program loop are not processed in
this case).

WHILE loops can be nested: Further WHILE loops can be programmed within a
WHILE loop.

The current program execution can be aborted in the WHILE loop using CONTINUE;
EXIT terminates the complete WHILE loop processing.

Example in Fig. 9.23: The data block %DB90 is searched word-by-word from the data
word DBW16 for the bit pattern 16#FFFF. For every loop cycle, the loop-control tag
#Offset is increased by 2 (bytes). Loop processing ends when the bit pattern is
found. The #Quantity tag specifies the word in which the bit pattern is found.

REPEAT statement

The REPEAT statement is used to repeatedly process a program loop for as long as
an abort condition is not fulfilled. Fig. 9.24 shows the principle of operation of the
REPEAT statement.

<Condition> is an operand or expression with data type BOOL. The statements fol-
lowing REPEAT are repeatedly processed for as long as <Condition> is FALSE. <Con-
dition> is scanned after each loop processing. If the value is TRUE, program execu-
tion is continued following END_REPEAT. The program loop is executed at least
once, even if the abort condition is fulfilled right from the start.

REPEAT loops can be nested: Further REPEAT loops can be programmed within a
REPEAT loop.

The current program execution can be aborted in the REPEAT loop using CON-
TINUE; EXIT terminates the complete REPEAT loop processing.

Example in Fig. 9.25: In the data block “Data.SCL”, the Measurement data field is
searched. The search ends as soon as a component has the value 16#FFFF. The index
of the found field component is then in the loop-control tag #k.

Fig. 9.23 Example of a WHILE loop

9 Structured Control Language SCL

314

CONTINUE statement

CONTINUE finishes the current program execution in a FOR, WHILE, or REPEAT
loop. Fig. 9.26 shows the principle of operation of the CONTINUE statement.

Following execution of CONTINUE, the conditions for continuation of the program
loop are scanned (with WHILE and REPEAT) or the loop-control tag is changed by the
increment and checked whether it is still in the control range. If the conditions are
fulfilled, execution of the next loop starts following CONTINUE. CONTINUE results
in abortion of execution of the loop which directly surrounds the CONTINUE state-
ment.

Example in Fig. 9.27: Memory bits are reset by two nested FOR loops. The first reset
memory bit has #ByteBegin as byte address and #BitBegin as bit address. The last
reset memory bit has #ByteBegin + #Quantity as byte address and #BitEnd as bit
address. If in the first byte the loop-control tag #k is less than #BitBegin, the pro-
gram begins again with #k increased by +1. If in the last byte (in the last run-
through of the external FOR loop) the loop-control tag #k is greater than #BitEnd,
the execution of the internal FOR loop ends.

Fig. 9.24 Principle of operation of the REPEAT control statement

Fig. 9.25 Example of the REPEAT statement

Control statement REPEAT

REPEAT
<Statements>;
UNTIL <Condition>

END_REPEAT;

REPEAT

no

END_REPEAT

UNTIL

Statements

Condition ?

The control statement REPEAT processes a program section <Statements> for as long as a
<Condition> is not fulfilled. <Condition> is a binary tag or an expression with binary result.

9.6 Controlling the program flow with SCL

315

Fig. 9.26 Principle of operation of the CONTINUE control statement

Control statement CONTINUE

IF <Condition>
THEN CONTINUE;

END_IF;

REPEAT

no

END_REPEAT

UNTIL

<Statements>

IF CONTINUE

IF CONTINUE

IF CONTINUE

IF CONTINUE

<Statements>

Condition ?

Finish execution of a REPEAT loop

Finish execution of a FOR loop

Finish execution of a WHILE loop

WHILE

END_WHILE

FOR

END_FOR

<Statements>

<Statements>

<Statements>

<Statements>

Loop-control >=
End value ?

Condition ?

DO

DO

For the statement sequence:

the following is present in
the representations:

The control statement CONTINUE finishes the current execution of a FOR, WHILE or REPEAT
program loop. CONTINUE can be positioned anywhere in the instruction part of the loop.

CONTINUE usually depends on
a condition. This condition has the
data type BOOL and can be a tag or
an expression.

http://pnap.ir/siemens-s71200-price-list/

9 Structured Control Language SCL

316

EXIT statement

EXIT leaves a FOR, WHILE, or REPEAT loop at any position independent of condi-
tions. Loop processing is aborted immediately and the program following END_-
FOR, END_WHILE, or END_REPEAT is processed. Fig. 9.28 shows the principle of
operation of the EXIT statement.

EXIT results in leaving of the loop which directly surrounds the EXIT statement. An
example is shown in Fig. 9.27.

9.6.4 Block functions

The block functions call and terminate blocks. A detailed description of the block
functions is provided in Chapter 12.3 “Calling of code blocks” on page 413. Fig. 9.29
shows examples of the block functions with SCL.

When calling, an SFC system function is treated like an FC function and an SFB sys-
tem block is treated like an FB function block. The ENO enable output can be added
as the last parameter to the block parameter list. The application of the enable
input EN is only allowed with function blocks (FB).

Terminate block with RETURN

The RETURN statement terminates processing in the current block. The program
elements catalog contains RETURN under Basic instructions > Program control oper-
ations.

Example in Fig. 9.29: The block is left if the ENO tag signals an error (is then FALSE).

Call FC block without function value

When calling an FC function, the name of the function is followed by the parameter
list in parentheses. All parameters must be supplied. In Fig. 9.29, the “Adder” func-
tion call is used as an example.

Fig. 9.27 Example of the CONTINUE and the EXIT statement

9.6 Controlling the program flow with SCL

317

Fig. 9.28 Principle of operation of the EXIT control statement

Control statement EXIT

REPEAT

no

END_REPEAT

UNTIL

IF EXIT

IF EXIT

IF EXIT

Cancel a REPEAT loop

Cancel a FOR loop

Cancel a WHILE loop

WHILE

END_WHILE

FOR

END_FOR

Condition ?

Condition ?

DO

DO

IF <Condition>
THEN EXIT;

END_IF;

IF EXIT

For the statement sequence:

the following is present in
the representations:

The control statement EXIT finishes a FOR, WHILE or REPEAT program loop.
EXIT can be positioned anywhere in the instruction part of the loop.

<Instructions>

<Instructions>

Loop-control >=
End value ?

<Instructions>

<Instructions>

<Instructions>

<Instructions>

EXIT usually depends on a condition.
This condition has the data type BOOL
and can be a tag or an expression.

9 Structured Control Language SCL

318

Call FC block with function value

An FC function with function value can be used like a tag with the data type of the
function value, for example in an expression. The parameters of the function fol-
low the function name in parentheses and must all be supplied with values.

In Fig. 9.29, the function value of the “Adder_2” function is assigned to the
#Result[1] tag.

Call FB function block as single instance

When calling a function block as a single instance, the name of the instance data
block is specified. This is followed by the parameter list in parentheses. Not all
parameters have to be supplied with values for a function block. You simply omit
the parameters which are not supplied from the list.

In Fig. 9.29, the instance data block “Totalizer_DB” is called as an example. “Total-
izer_DB” is derived from the function block “Totalizer”.

Fig. 9.29 Examples of the block functions with SCL

9.7 Working with source files

319

Call FB function block as local instance

When calling a function block as local instance, the instance name is followed by the
parameter list in parentheses. Not all parameters have to be supplied with values
for a function block. You simply omit the parameters which are not supplied from
the list.

In Fig. 9.29, the local instance #Totalizer is called as an example. #Totalizer is
derived from the function block “Totalizer” and is in the instance data block of the
calling function block.

Supplying the block parameters

The input parameters on blocks and functions can be constants, tags, and expres-
sions.

In the last example in Fig. 9.29, the #Result[4] tag is assigned a total made up of the
#Result[3] tag and the function value (return value) of the standard function
LIMIT. In this case a function with a function value is used within an arithmetic
expression.

The value to be limited by LIMIT is the output parameter of the local instance
#Totalizer from the example above this one. It is addressed by #Totalizer.Result and
has the data type REAL. A conversion from REAL to INT must therefore still take
place at the IN parameter which expects the data type INT. The total of #Lower_limit
and #Hysteresis is output as the minimum at the MN parameter.

Additional information about supplying blocks and functions based on blocks with
parameters can be found in Chapter 5.4 “Calling blocks” on page 137.

9.7 Working with source files

Blocks with the programming language SCL can be programmed as a text file out-
side the TIA Portal. Any text editor which generates ASCII-coded text can be used for
this. Blocks which can be edited further with STEP 7 are generated from these text
files – referred to as “source files” or “program sources” – by importing into the TIA
Portal and subsequent compilation. Blocks programmed with SCL in the TIA Portal
can also be saved as text files.

9.7.1 General procedure

A source file can be generated in two different ways: You write the source file com-
pletely using a text editor, or you take a block as template and generate a source
file by exporting the block. Following editing with the text editor, you import the
external source file into the TIA Portal and generate the blocks contained in the
source file by compiling. You can then edit these further using the program editor
of STEP 7.

9 Structured Control Language SCL

320

Generating a source file by exporting

In the project tree, select the block(s) from which you wish to generate a source file
in the Program blocks folder and select the Copy as text command from the shortcut
menu. The program editor writes the source text into the Windows clipboard.

Open the text editor of your choice – such as the Notepad program in Windows –
and paste the content of the clipboard into it. Save the SCL source file with the
extension .scl. Files with this extension can be imported as external source files
into the TIA Portal.

Generating a source file with a text editor

In order to program a block, you must use keywords in a specific sequence in the
source file. The program of each block consists of the block header with specifica-
tion of the block type and properties. With logic blocks, this is followed by the dec-
laration of the interface and the actual program. With data blocks and PLC data
types you specify the data operands or data types after the block header.

If the source file contains blocks which are called in the source file or if data oper-
ands are accessed, you should observe a specific sequence in the source file. The
blocks or data operands should be located before the position of use in the source
file. You can also call blocks in the source file which are present in the Program
blocks folder or use system blocks and functions from the program elements cata-
log.

A source file can contain several blocks and these can be logic or data blocks as well
as PLC data types. You export and import PLC tags separate from the source file (see
Chapter 6.2.4 “Exporting and importing a PLC tag table” on page 181). The follow-
ing chapters describe how to program blocks in a source file.

Importing an external source file

To import an external source file, open the External source files folder in the project
tree and double-click on Add new external file. In the dialog box, navigate to the
storage location, select the source file and import it by clicking the Open button.

The source file is saved in the External source files folder.

Editing an external source file in the TIA Portal

As preparation for editing an external source file in the TIA Portal, you must link
the file extension .scl to a text editor. To do this, open the Windows Explorer, navi-
gate to the source file, and select the Properties dialog from the shortcut menu of
the source file. In the General tab, click on Change in the File type area. Under Open
with, select the editor which you wish to link to the file extension .scl.

You can then edit the source file using the linked editor by double-clicking on it in
the External source files folder.

9.7 Working with source files

321

Generating the blocks of an external source file

To transfer the blocks from the source file to the Program blocks folder, select a
source file in the External source files folder and then the Generate blocks command
from the shortcut menu. Acknowledge the message which may appear informing
that existing blocks will be overwritten. The generated blocks are imported into
the Program blocks folder. The result of the generation is shown by STEP 7 in the
inspector window in the Info > Compile tab. Note that these messages refer to the
source file.

It is recommendable to compile the blocks imported from the source file prior to
further processing in the TIA Portal.

9.7.2 Programming a logic block in the source file

Table 9.10 shows which keywords you require for block programming and the
sequence in which the keywords are used.

Block header and block properties

Programming a logic block commences with the keyword for the block type and
with the specification of the block name in quotation marks. On import, the block
is assigned the first free number of the block type. This can be changed in the
block properties after import.

An organization block has the name of the event class (e.g. “Cyclic interrupt”, see
Table 5.5 on page 154). On import, the organization block is then assigned the first
free number of the event class (e.g. 30 for event class “Cyclic interrupt”). Only one
organization block can be imported to a source file per event class.

In the case of functions, you specify the data type of the function value following
the addressing; example: FUNCTION “FC_name” : INT. If the function does not have
a function value, the data type is called VOID.

The block title and the block commentary are entered in the block properties under
General > Information.

The data for the block properties is optional. You simply omit the surplus data
together with the keywords.

You activate the block attribute Optimized block access by specifying {S7_Opti-
mized_Access := ’TRUE’}.

The keyword KNOW_HOW_PROTECT protects the block from unwanted access. You
can no longer cancel this protection, in contrast to block protection with password
in the TIA Portal.

Block interface

The block interface contains the definition of the block parameters and block-local
tags. You cannot program every declaration section in every block (see Table 9.10).
If you do not use a declaration section, omit it including the keywords.

9 Structured Control Language SCL

322

The declaration of a tag consists of the name, the data type, possibly a default set-
ting, and an optional tag comment. Example:

Quantity : INT := +500; //Units per batch

If a name contains special characters such as a space, it must be given in quotation
marks. Not all tags can have default values, e.g. default values are not possible for
the temporary local data.

Table 9.10 Keywords for logic blocks

Section Keyword Meaning

Block type ORGANIZATION_BLOCK “OB_name”
FUNCTION_BLOCK “FB_name”
FUNCTION “FC_name” : Data type

Start of an organization block
Start of a function block
Start of a function

Header TITLE = block title
//Block comment

Block title in the block properties
Block comment in the block properties

{S7_Optimized_Access := ’TRUE’}
KNOW_HOW_PROTECT

Optimized block access: selected
Know-how protection (cannot be canceled)

NAME : Block name
FAMILY : Block family
AUTHOR : Created by
VERSION : Version

Block property: Block name
Block property: Block family
Block property: Created by
Block property: Block version

Declaration VAR_INPUT
name : Data type := Default setting; *)
END_VAR

Input parameters (for FC, FB, and some OBs)

VAR_OUTPUT
name : Data type := Default setting; *)
END_VAR

Output parameters (for FC and FB)

VAR_IN_OUT
name : Data type := Default setting; *)
END_VAR

In-out parameters (for FC and FB)

VAR
name : Data type := Default setting; *)
END_VAR

Static local data (only with FB)

VAR_TEMP
name : Data type := Default setting; *)
END_VAR

Temporary local data

Program BEGIN Beginning of the block program

Program statement; Termination of each statement with semicolon

//Line comment Line comment up to end of line, also programmable
following statements

(* Block comment *) Block comment, can extend over several lines

Block end END_ORGANIZATION_ BLOCK
END_FUNCTION_BLOCK
END_FUNCTION

End of an organization block
End of a function block
End of a function

*) Superimposing of data types with the keyword AT is additionally possible (see text)

9.7 Working with source files

323

The sequence of individual declaration sections is defined as shown in Table 9.10.
The sequence within a declaration section is optional. If you combine tags with data
type BOOL and also combine byte-wide tags with data types BYTE and CHAR, you
can minimize the memory requirements for blocks with non-optimized block
access.

The superimposition of data types with the keyword AT is programmed directly
after the declaration of the tags to be overlaid. The schema is as follows: var_new
AT var_old : new_data type. Example:

VAR_INPUT
 Date : DTL;
 Byte array AT date : ARRAY [1..12] OF BYTE;
END_VAR

You can now address the total tag in the program of the block using #Date or indi-
vidual components such as the day using #Byte array[3]. Data type superimposition
is possible for blocks with non-optimized block access and is described in Chapter
4.3.3 “Overlaying tags (data type views)” on page 93.

Program section

The program section of a logic block starts with the keyword BEGIN and ends with
the keyword for the block end.

No distinction is made between upper and lower case when compiling. The syntax
of an SCL statement is described in Chapter 9.1.2 “SCL statements and operators”
on page 286. You can enter one or more spaces or tabulators between operation and
operand. To achieve a clearer layout of the source text, for example to increase leg-
ibility, you can enter any spaces and/or tabs between the words.

You must conclude every statement by a semicolon. You can also program several
statements per line, each separated by a semicolon. Following the semicolon you
can specify a statement comment, separated by two slashes; this extends up to the
end of the line.

A line comment commences with two slashes at the start of the line. It extends up
to the end of the line. A block comment is started by a round left parenthesis and
asterisk and finished by an asterisk and round right parenthesis. A block comment
can extend over several lines.

If the source file contains blocks which are called in the source file or if data oper-
ands are accessed, you should observe a specific sequence in the source file. The
blocks or data operands should be located before the position of use in the source
file.

When calling a block, you enter the block parameters in round parentheses, each
separated by a comma. Make sure that the transferred block parameters are listed
in the same order as they have been declared in the called block. The same applies
to functions with parameter list from the program elements catalog.

Fig. 9.30 shows an example of an SCL source file for a function block with the asso-
ciated instance data block.

9 Structured Control Language SCL

324

FUNCTION_BLOCK FIFO
TITLE=Intermediate memory for 4 values

AUTHOR : Berger
FAMILY : Book1200
NAME : FIFO_SCL
VERSION : 01.00

//Example of a function block
VAR_INPUT
 Import : BOOL := FALSE; //Import with positive edge
 Input value : REAL := 0.0; //Input in data format REAL
END_VAR

VAR_OUTPUT
 Output value : REAL := 0.0; //Output in data format REAL
END_VAR

VAR
 Value1 : REAL := 0.0; //First saved REAL value
 Value2 : REAL := 0.0; //Second value
 Value3 : REAL := 0.0; //Third value
 Value4 : REAL := 0.0; //Fourth value
 Edge trigger flag : BOOL := FALSE;//Edge trigger flag for importing
END_VAR

BEGIN
//Control is implemented with positive edge on #Import
//
IF #Import = TRUE AND #Edge trigger flag = FALSE THEN
#Output value := #Value4;
#Value4 := #Value3; //Transfer starting with the last value
#Value3 := #Value2;
#Value2 := #Value1;
#Value1 := #Input value;
END_IF;

#Edge trigger flag := #Import; //Update edge trigger flag

END_FUNCTION_BLOCK

DATA_BLOCK DB_FIFO
TITLE = Instance data block for "FIFO"
//Example of an instance data block

AUTHOR : Berger
FAMILY : Book1200
NAME : FIFO_Dat
VERSION : 01.00

"FIFO" //Instance for the FB "FIFO"

BEGIN
 Value1 := 1.0; //Individual default setting
 Value2 := 1.0; //of selected values
END_DATA_BLOCK

Fig. 9.30 Example of an SCL source file

9.7 Working with source files

325

9.7.3 Programming a data block in the source file

Table 9.11 shows which keywords you require for block programming and the
sequence in which the keywords are used.

Block header and block properties

A data block commences with the keyword DATA_BLOCK and with specification of
the block name in quotation marks. On import, the first free data block number is
assigned. It can be changed later in the block properties.

The block title and the block commentary are entered in the block properties under
General > Information.

The data for the block properties is optional. You simply omit the surplus data
together with the keywords.

You activate the block attribute Optimized block access by specifying {S7_Opti-
mized_Access := ’TRUE’}.

The keyword KNOW_HOW_PROTECT protects the block from unwanted access. You
can no longer cancel this protection, in contrast to block protection with password
in the TIA Portal.

Table 9.11 Keywords for data blocks

Section Keyword Meaning

Block type DATA_BLOCK “DB_name” Start of a data block

Header TITLE = block title
//Block comment

Block title
Block comment

{S7_Optimized_Access := ’TRUE’}
KNOW_HOW_PROTECT
UNLINKED
READ_ONLY

Optimized block access: selected
Know-how protection (cannot be canceled)
Block attribute: not executable
Block attribute: read-only

NAME : Block name
FAMILY : Block family
AUTHOR : Created by
VERSION : Version

Block property: Block name
Block property: Block family
Block property: Created by
Block property: Block version

Declaration STRUCT
name : Data type := Default setting;
END_STRUCT

for a global data block

Data type_name alternatively for a type data block

FB_name alternatively for an instance data block

Initialization BEGIN
name := Default setting; Assignment with individual initial values

Block end END_DATA_BLOCK End of a data block

9 Structured Control Language SCL

326

With the keyword UNLINKED, the Only store in load memory attribute is activated.
In this way, the data block is not loaded to the work memory.

The keyword READ_ONLY activates the Data block write-protected in device attribute.
If this attribute is activated for a data block, a program can only read from this data
block.

Block interface

The block interface contains the declaration of the data operands. With a global
data block, you program the data operand here, with a type data block, you specify
the assigned PLC data type, and with an instance data block, you assign the associ-
ated function block.

The declaration of a tag in a global data block consists of the name, the data type,
possibly a default setting, and an optional tag comment. Example:

Quantity : INT := +500; //Units per batch

The tag order can be random. If you combine tags with data type BOOL and also
combine byte-wide tags with data types BYTE and CHAR, you can minimize the
memory requirements for a block with non-optimized block access.

The declaration in a type data block consists only of the specification of the
assigned PLC or system data type, e.g. IEC_COUNTER. Data blocks derived from a
system data type are stored in the project tree under Program blocks > System blocks
> Program resources.

The declaration in an instance data block consists only of the specification of the
assigned function block.

Default setting with start values

The initialization part starts with BEGIN and ends with END_DATA_BLOCK. You
must specify these keywords even if you do not assign default values to the tags in
the initialization part.

By assigning default values to the start values, it is possible to assign individual val-
ues to each application (each instance) in the case of type and instance data blocks.

If you do not specify a start value for a data operand, the value from the block inter-
face is used: The default value is retained for a global data block and the default
value in the PLC data type or in the function block then applies to a type or instance
data block.

9.7 Working with source files

327

9.7.4 Programming a PLC data type in the source file

Table 9.12 shows which keywords you require for data type programming and the
sequence in which the keywords are used.

Block header

A PLC data type (UDT, user data type) starts with the keyword TYPE and with the
specification of the data type name in quotation marks. This can be followed by a
data type title and a data type commentary, which are entered in the properties of
the PLC data type under Information. This information is optional.

Declaration of data type

The declaration part contains the definition of the data type components. The struc-
ture of a PLC data type corresponds to that of a data structure STRUCT.

The declaration of a component consists of the name, the data type, possibly a de-
fault setting, and an optional comment. Example:

Quantity : INT := +500; //Units per batch

Table 9.12 Keywords for PLC data types

Section Keyword Meaning

Block type TYPE “Type_name” Start of a PLC data type

Header TITLE = Data type title
//Data type comment

Data type title
Data type comment

Declaration STRUCT
name : Data type := Default setting;
END_STRUCT

Declaration of data type components

Block end END_TYPE End of the PLC data type

10 Basic functions

328

10 Basic functions

This chapter describes the basic functions largely independent of the programming
language selected. Binary logic operations are an exception, since the differences
between the programming languages are greatest with these functions. The Chap-
ters 7 “Ladder logic LAD” on page 209, 8 “Function block diagram FBD” on page 246,
and 9 “Structured Control Language SCL” on page 284 describe how you can pro-
gram the functions using the individual programming languages and what special
features exist.

10.1 Binary logic operations

10.1.1 Introduction

Binary logic operations link the signal states of binary tags in accordance with AND,
OR, and exclusive OR. In the LAD programming language, they are implemented by
the series and parallel connection of contacts, in FBD by the corresponding function
boxes, and in SCL by logical expressions.

Binary logic operations can be used together with all binary tags. Addressing of the
binary tags can be absolute or symbolic. A binary tag has the data type BOOL and
can have signal state “1” or “0”. In SCL, the designations TRUE and FALSE are com-
mon.

The result of a binary logic operation can be processed further as follows:

b Control of a binary tag with a binary memory function, e.g. with
a simple coil (LAD) or an assignment (FBD, SCL).

b Control of program execution with a conditional jump or
a conditional block call (EN input).

b Supply of a binary function input or a binary block parameter.

Binary logic operations can be combined together so that, for example, the output
of one logic operation can lead to the input of the next one, or series connections
can be connected in parallel. Possible combinations are described for LAD in Chap-
ter 7.2.5 “Mixed series and parallel connections” on page 216, for FBD in Chapter
8.2.6 “Mixed binary logic operations” on page 254, and for SCL in Chapter 9.2.6
“Combined binary logic operations” on page 292.

10.1 Binary logic operations

329

10.1.2 Scanning for signal states “1” and “0”, result of the scan

Before the signal state of a binary tag is linked, the binary tag is set to either signal
state “1” or scanned for signal state “0” and a scan result is formed. Only the scan
result will be linked. The result of logic operation (RLO) is formed from all linked
scan results. LAD uses the NC contact to scan for signal state “0”, FBD uses the nega-
tion circle at the function inputs, and SCL uses the negation NOT (Fig. 10.1).

There are signal transmitters, e.g. pushbuttons, which when actuated issue signal
state “1” (pushbuttons with NO function) or signal state “0” (pushbuttons with NC
function). The scans for signal states “1” and “0” can be used to take into account
this difference in creating the program. Further information can be found for LAD
in Chapter 7.2.2 “Consideration of sensor type in ladder logic” on page 213, for
FBD in Chapter 8.2.2 “Taking account of the sensor type in the function block dia-
gram” on page 251, and for SCL in Chapter 9.2.1 “Scanning for signal states “1”
and “0”” on page 288.

10.1.3 Negating the result of the logic operation, NOT contact

Ladder logic

The NOT contact negates the “current flow” within a current path. If the current
path has “current” prior to the NOT contact, no more “current” flows following the
NOT contact and vice versa (Fig. 10.2).

Fig. 10.1 Scanning for signal state “1” (NO contact) an “0” (NC contact)

LAD
NO contact
NC contact

FBD

SCL
Scanning for signal
states “1” and “0”

Binary tag

Binary tag

... Binary tag NOT Binary tag ...

Binary tag

Function

Scan signal state

“0”

“0”

“0” “1”

“1”

“1”Binary tag

Tag, function Signal state

Scanning for signal
states “1” and “0”

If the binary tag is 1, the NO contact is
closed or when scanned for “1”,
the scan result is “1”.
If the binary tag is “0”, the NC contact is
closed or when scanned for “0”,
the scan result is “1”.

NO contact, scanning for “1”
NC contact, scanning for “0”

Binary tag

10 Basic functions

330

Function block diagram

The negation circle at the input or output of a function symbol negates the result of
logic operation (Fig. 10.2). You can

b apply the negation to the scan of a binary tag; this then corresponds to
scanning for signal state “0” (see above),

b set the negation between two binary functions (this corresponds to negation
of the result of logic operation), or

b position the negation at the output of a binary function (e.g. if you wish to set
or reset a binary tag if the logic operation is not fulfilled, i.e. the result of logic
operation = “0”).

Structured control language

The NOT negation negates the result of logic operation. You can put NOT in an
expression before a tag; the tag is then scanned for signal state “0” and you can
write NOT before an expression you have placed in parentheses. Then the result
of logic operation of the expression is negated (Fig. 10.2).

10.1.4 Testing floating-point tag, OK contact, OK box

The testing of a tag with data type REAL or LREAL is used to check the validity of the
tag value (Fig. 10.3).

Testing with the OK contact or with the NOT_OK contact is implemented in the lad-
der logic. The OK contact has signal state “1” if the floating-point tag is valid; the
NOT_OK contact has signal state “1” if the floating-point tag is invalid.

Fig. 10.2 NOT contact, negate result of logic operation

LAD
NOT contact

SCL
Negation NOT

FBD
Negate result of logic operation

Function

At a box input At a box output

NOTRLO 1

RLO 1RLO 1 RLO 2RLO 2

RLO 2

NOT contact, negate result of logic operation

“0”

“0” “1”

“1”Result of logic operation 1

Result of logic operation 2

RLO, function Signal state

... [] (Expression with RLO1) ...RLO2 NOT

LAD: The “current flow” in the current path is negated:
“no current flows” becomes “current flows” and vice versa.

FBD: The signal state at the box input or output is negated:
signal state “1” becomes signal state “0” and vice versa.

SCL: The binary result of an expression is negated:
TRUE becomes FALSE and vice versa.

10.1 Binary logic operations

331

In the function block diagram there are the OK box and the NOT_OK box for the
scan. The OK box has signal state “1” at the function output if the floating-point tag
is valid; the NOT_OK box has signal state “1” if the floating-point tag is invalid.

In SCL, use an alternative program to test a floating-point tag. A function with a
floating-point tag as input signals an error via the ENO tag if the floating-point tag
is invalid (see Chapter 12.4.2 “EN/ENO mechanism with SCL” on page 418). On
error, ENO is set to FALSE, otherwise the signal state of ENO is unaffected. In the
example, the signal state of ENO is assigned to the self-defined tag #OK. You can
also directly scan ENO, e.g. with the IF statement.

10.1.5 AND function, series connection

The AND function links two or more binary states together and delivers a result of
logic operation “1” if all states (all results of the scans) are simultaneously “1”. In
all other cases, the result of logic operation is “0”.

In the ladder logic, the AND function is implemented by series connection of con-
tacts; in the function block diagram, this is done with the AND box. SCL uses the
logic operator AND or & in connection with binary tags (Fig. 10.4).

Each AND function in the examples is shown with two inputs; the number of inputs
of an AND function is theoretically unlimited. In the examples, the binary tags are
scanned directly (for signal state “1”). With a scan for signal state “0” it is necessary
to consider the negated signal state of the binary tags in the logic operation accord-
ing to AND.

Fig. 10.3 Test floating-point tag, OK contact, OK box

Floating-point tag

Floating-point tag Floating-point tag

Testing floating-point tag

LAD
OK contact,
NOT_OK contact

SCL

FBD
OK box,
NOT_OK box

Function

OK NOT_OK

OK

[RLO 1]

[RLO 1] [RLO 2]

[RLO 2]

NOT_OK

yes

“0”

“0” “1”

“1”

noFloating-point tag is valid

Tag, function Signal state

n

n

n

ENO := TRUE;
#var_temp := TRUNC();
#OK := ENO;

Floating-point tag

Floating-point tag

(emulation of the function
by surrogate program)

Result of logic operation 1, #OK

Result of logic operation 1

If the floating-point tag is valid, then

with LAD, the OK contact is closed and
the NOT_OK contact is open,

with FBD, the OK box has signal state “1”
and the NOT_OK box has “0” and

the ENO tag remains unaffected
with SCL.

10 Basic functions

332

10.1.6 OR function, parallel connection

The OR function links two or more binary signal states together and delivers a
result of the logic operation “0” if all states (all results of the scans) are simultane-
ously “0”. In all other cases, the result of the logic operation is “1”.

Fig. 10.4 Series connection, AND function

Fig. 10.5 Parallel connection, OR function

LAD
Series connection
of contacts

Binary tag 1 Binary tag 2

“0”

“0”

“0”

“0” “0” “0”

“0”

“1”

“1” “1”

“1”

“1”

Binary tag 1

Result of logic operation

Result of logic operation

Result of logic operation

&FBD
AND box

SCL
AND funktion

Function Signal state

Series connection, AND function

Result of logic operation := Binary tag 1 AND Binary tag 2;

*Binary tag 2

Current is flowing in the current path,
or the AND function is fulfilled, if all
binary tags have signal state “1”.
The series connection can have several
contacts, or the AND function can have
several inputs.

Result of logic operation := Binary tag 1 & Binary tag 2;

Tags, RLO

Binary tag 1

Binary tag 2

LAD
Parallel connection
of contacts

Binary tag 1

Binary tag 2

Binary tag 1

Binary tag 2 Result of logic operation

Result of logic operation

>=1FBD
OR box

Function

“0”

“0”

“0”

“0” “1” “1”

“0”

“1”

“1” “1”

“1”

“1”

Result of logic operation

Signal stateTags, RLO

Binary tag 1

Binary tag 2

Parallel connection, OR function

SCL
OR funktion

*

Current is flowing in the current path, or
the OR function is fulfilled, if at least one
binary tag has signal state “1”. Several
contacts can be connected in parallel, or
the OR function can have several inputs.

Result of logic operation := Binary tag 1 OR Binary tag 2;

10.1 Binary logic operations

333

In the ladder logic, the OR function is implemented by the parallel connection of
contacts; in the function block diagram, this is done with the OR box. SCL uses the
logic operator OR in connection with binary tags (Fig. 10.5).

Each OR function in the examples is shown with two inputs; the number of inputs
of an OR function is theoretically unlimited. In the examples, the binary tags are
scanned directly (for signal state “1”). With a scan for signal state “0” it is necessary
to consider the negated signal state of the binary tags in the logic operation accord-
ing to OR.

10.1.7 Exclusive OR function, non-equivalence function

The exclusive OR function links two or more binary signal states together and deliv-
ers a logic operation result “1” if an odd number of states (the results of the scans)
are simultaneously “1”. In all other cases, the result of the logic operation is “0”. If
special cases where the exclusive OR function has two inputs, it delivers a logic
operation result “1” if the two inputs have different signal states.

In the ladder logic, the exclusive OR function is implemented by a combination of
series connection and parallel connection of contacts; in the function block dia-
gram, this is done with the exclusive OR box. SCL uses the logic operator XOR in
connection with binary tags (Fig. 10.6).

Fig. 10.6 Exclusive OR function

LAD

Result of logic operation

Result of logic operation

XFBD
Exclusive OR box

Function

Exclusive OR function

*
SCL
XOR funktion

Binary tag 1

Binary tag 2

Parallel connection
of series connections

Binary tag 2Binary tag 1

Binary tag 2Binary tag 1

Current is flowing in the current path, or
the exclusive OR function is fulfilled, if
an odd number of binary tags has signal
state “1”. The XOR function can have several
inputs. For LAD, the exclusive OR function
must be emulated.

“0”

“0”

“0”

“0” “1” “1”

“0”

“1”

“1” “1”

“0”

“1”

Result of logic operation

Signal stateTags, RLO

Binary tag 1

Binary tag 2

Result of logic operation := Binary tag 1 XOR Binary tag 2;

10 Basic functions

334

10.2 Memory functions

10.2.1 Introduction

The memory functions are used together with the binary logic operations in order
to influence the signal states of binary tags with the assistance of the result of the
logic operation generated by the control processor.

The following memory functions are available:

b Assignment of the logic operation result

b Individual set and reset

b Multiple setting and resetting

b Dominant setting and resetting with memory boxes

The memory functions can be used together with all binary tags. A result of logic
operation can be used to influence several memory functions simultaneously. The
result of logic operation does not change during execution of a memory function.

10.2.2 Simple and negated coil, assignment

The assignment is used to transfer the result of logic operation to a binary tag. If
the result of logic operation is “1”, the binary tag is set to signal state “1”; if it is “0”,
the binary tag is set to signal state “0”. In LAD, the assignment is represented by the
single coil, in FBD by the assignment box, and in SCL by the assignment operator
“=” (Fig. 10.7).

With the negated assignment, the negated result of logic operation is transferred
to a binary tag. If the result of logic operation is “1”, the binary tag is reset to signal

Fig. 10.7 Simple and negated coil, assignment and negated assignment

LAD
Simple coil
Negated coil

RLO

RLO

RLO

RLO (RLO)(RLO)

(RLO)(RLO)

= I=

FBD
Assignment
Negated assignment

SCL
Assignment
Negated assignment

Function

“0”

“0”

“0” “1”

“1”

“1”

Signal state

Simple coil, assignment

The simple coil or the assignment transfers the
result of the logic operation to the binary tag.
The negated coil or the negated assignment
transfers the negated result of the logic operation
to the binary tag. The coil or box can also be
positioned in the middle of the logic operation.

Binary tag 1
Binary tag 1

(... ...);:= RLO
(... ...);:= NOT RLO

Binary tag 1

Binary tag 1 Binary tag 2

Binary tag 2

Binary tag 1

RLO, tags

Binary tag 2

Result of logic operation

10.2 Memory functions

335

state “0”; if it is “0”, the binary tag is set to signal state “1”. The negated assignment
is represented in LAD by the negated coil, and in FBD by the negated assignment
box. SCL uses the negation NOT to negate a result of logic operation.

In LAD and FBD, the assignment does not influence the result of logic operation so
that a logic operation can also be continued after the assignment function.

10.2.3 Single set and reset

Single setting sets a binary tag to signal state “1” if the result of logic operation is
“1”. The binary tag is not influenced if the result of logic operation is “0”; it remains
set if it was set, and remains reset if it was reset. The individual setting is repre-
sented in LAD by the set coil, and in FBD by the set box. In SCL, the set function can
be emulated with an IF statement (Fig. 10.8).

Single resetting sets a binary tag to signal state “0” if the result of logic operation
is “1”. The binary tag is not influenced if the result of logic operation is “0”; it
remains set if it was set, and remains reset if it was reset. The individual resetting
is represented in LAD by the reset coil, and in FBD by the reset box. In SCL, the reset
function can be emulated with an IF statement.

Individual setting and resetting does not affect the result of logic operation in LAD
and FBD so that a logic operation can be continued even after the set and reset func-
tion.

To make the programming clearer, you should always use the single set and reset
function in pairs for a specific binary tag, and only once each. You should also avoid
controlling this binary tag in addition by an assignment.

Fig. 10.8 Single setting and resetting

“0”

“0” “1”

“1”

S R

Function

LAD
S coil,
R coil

FBD
S box,
R box

SCL

Signal state

Single setting and resetting

If the result of the logic operation is “1”, the tag
for the S coil or S box is set, and the tag for the
R coil or R box is reset. A logic operation result
“0” has no effect. The coil or box can also be
positioned in the middle of the logic operation.

RLO

RLO

RLO

RLO (RLO)(RLO)

(RLO)(RLO)

S R

IF [RLO] THEN
Binary tag 1 Binary tag 2:= TRUE;

END_IF;

IF [RLO] THEN
:= FALSE;

END_IF;

Binary tag 1

Binary tag 1 Binary tag 2

Binary tag 2

Binary tag 1

RLO, tags

Binary tag 2

Result of logic operation

Unchanged

Unchanged

Nachbildung mit
der IF-Anweisung

10 Basic functions

336

When applying the single memory functions to the same binary tag, the sequence
of the arrangement is important since the function processed last is dominant if the
set and reset functions are activated simultaneously. For example, if the reset func-
tion is processed after the set function, the reset is dominant.

Note that the binary tag used with a single memory function can be reset during the
startup by the CPU's operating system. In certain cases, the signal state is retained:
this depends on the operand area used (e.g. static local data) and on settings in
the CPU (e.g. retentive behavior).

10.2.4 Multiple setting and resetting

With multiple setting and resetting, the bits are set in the specified destination area
to signal status “1” (SET_BF) or to signal state “0” (RESET_BF).

Multiple setting and resetting is shown in the ladder logic as a coil. The binary tag
present above the coil indicates the first bit in the destination area. Underneath the
coil is the number of bits to be controlled as a constant in the range from 0 to
65 535. Multiple setting and resetting is performed if the coil is triggered with
result of logic operation “1”. If the result of logic operation is “0”, there is no influ-
ence on the binary tags in the destination area; then they retain their current signal
state (Fig. 10.9).

Fig. 10.9 Multiple setting and resetting

LAD
SET_BF coil
RESET_BF coil

Number Number

Number Number

SET_BF RESET_BFRLO

RLO RLO

RLO

Multiple setting and resetting

With the logic operation result “1”, the
SET_BF coil or box sets the number of
bits to “1”, starting at the binary tag
named above the coil or box. With the
logic operation result “1”, the RESET_BF
coil or box sets the number of bits to “0”,
starting at the binary tag named above
the coil or box.

FBD
SET_BF box
RESET_BF box

SCL

Function

SET_BF

EN

N N

DeclarationName

EN

N

-

INPUT

*) Constant in the range from 0 to 65 535

BOOL

UINT *)

Enabling input

Number

DescriptionData type

Result of logic operation

„0“

„0“ „1“

„1“

Signal state

RESET_BF

EN

Binary tag 1 Binary tag 2

Binary tag 1 Binary tag 2

(functions not available)

RLO, tags

Binary tag 1 and following

Binary tag 2 and following

Unchanged

Unchanged

10.2 Memory functions

337

Multiple setting and resetting is shown in the function block diagram as a box. The
binary tag present above the box indicates the first bit in the destination area. At
parameter N is the number of bits to be controlled as a constant in the range from
0 to 65 535. Multiple setting and resetting is performed if the enabling input EN of
the box is triggered with RLO “1”. If the result of logic operation is “0”, there is no
influence on the binary tags in the destination area; then they retain their current
signal state.

The functions SET_BF and RESET_BF are not present in SCL. They can be emulated,
for example, using the FOR statement. An example is given in the description of the
control statements in Section “CONTINUE statement” on page 314.

10.2.5 Dominant setting and resetting, memory boxes

The functions of the individual setting and resetting are combined in a memory
box. The common binary tag is named above the box. Input S or S1 corresponds to
the individual setting, input R or R1 to the individual resetting. The signal state of
the binary tag named above the memory function is present at the output Q of the
function.

Fig. 10.10 Dominant setting and resetting, memory boxes

LAD
SR box
RS box

FBD
SR box
RS box

SCL
SCL emulation
with the IF
statement

Function

Binary tag 1 (SR box)

RLO, tags

Binary tag 2 (RS box)

RLO 1 (set)

RLO 2 (reset)

RLO1

RLO1

RLO2

RLO2

RLO2

RLO2

RLO1

RLO1

Signal state

SR

SR

RS

RS

S

S

R

R

R1

R1

S1

S1

Q

Q

Q

Q

Dominant setting and resetting

IF [RLO2]
THEN Binary tag 1 := FALSE; //Reset dominant
ELSIF [RLO1]

THEN Binary tag 1 := TRUE;
END_IF;

IF [RLO1]
THEN Binary tag 2 := TRUE; //Set dominant
ELSIF [RLO2]

THEN Binary tag 2 := FALSE;
END_IF;

RLO “1” at the set input sets the binary
tag, RLO “1” at the reset input resets it.
If both inputs are “1” simultaneously,
the binary tag at the SR box is reset
and the binary tag at the RS box is set.

Binary tag 1

Binary tag 1

Binary tag 2

Binary tag 2

- “0”

“1” “1”

“0” “0”

“0” “1”

“1” “1”

“0” “1”

- “0”

“1” “0”

10 Basic functions

338

There are two versions of the memory function: as SR box (reset dominant) and as
RS box (set dominant). In addition to the difference in labeling, the two boxes also
differ in the positioning of the set and reset inputs (Fig. 10.10).

A memory function (or, to be more precise: the binary tag named above the memo-
ry box), is set when the set input has signal state “1” and the reset input signal
state “0”. A memory function is reset when “1” is present at the reset input and “0”
at the set input. Signal state “0” at both inputs has no influence on a memory func-
tion. If signal state “1” is present simultaneously at both inputs, the two memory
functions respond differently: the SR memory function is reset, the RS memory
function is set.

With SCL, the dominant memory function can be emulated, for example, by an
assignment together with an IF statement.

Note that the binary tag used with a memory function can be reset during the start-
up by the CPU's operating system. In certain cases, the signal state of a memory box
is retained: this depends on the operand area used (e.g. static local data) and on set-
tings in the CPU (e.g. retentive behavior).

10.3 Edge evaluation

10.3.1 Functional principle of an edge evaluation

An edge evaluation records the change in a signal state, i.e. the signal edge.
A positive (rising) edge is present if the signal changes from state “0” to state “1”.
The reverse case is a negative (falling) edge.

The equivalent of an edge evaluation in a circuit diagram is a fleeting contact. If the
fleeting contact outputs a pulse when the relay is switched on, this corresponds to
the rising edge. A pulse of the fleeting contact when switching off corresponds to a
falling edge.

The detection of a signal edge – the change in a signal state – is implemented in the
program. When processing an edge evaluation, the CPU compares the current
result of logic operation, e.g. the result of scan of an input, with a saved result of
logic operation. If the two signal states are different, a signal edge is present.

The saved result of the logic operation (RLO) is in a so-called “edge memory bit”
(it need not necessarily be a bit memory). It must be a binary tag whose signal state
is available again during the next processing of the edge evaluation (in the next
program cycle) and which you do not use at any further point in the program. Suit-
able binary tags are memory bits, data bits in global data blocks, and static local da-
ta bits in function blocks.

These edge memory bits save the “old” RLO, namely the result of the logic operation
with which the CPU last processed the edge evaluation. If a signal edge is then pres-
ent, i.e. if the current RLO is different from the signal state of the edge memory bit,
the CPU tracks the signal state of the edge memory bit by assigning it to the RLO

10.3 Edge evaluation

339

which is now current. During the next processing of the edge evaluation (usually in
the next program cycle), the signal state of the edge memory bit is equal to the cur-
rent RLO (if this has not changed again in the meantime), and the CPU no longer
recognizes an edge.

A recognized edge is indicated by the RLO following the edge evaluation. If the CPU
recognizes a signal edge, it sets the RLO following the edge evaluation to “1” (“cur-
rent” is then flowing). If a signal edge is not present, the RLO is equal to “0”.

Signal state “1” following an edge evaluation therefore means “ Edge detected”. Sig-
nal state “1” is only present briefly, usually for only one processing cycle. Since the
CPU does not detect an edge during the next processing of the edge evaluation
(if the “Input RLO” of the edge evaluation does not change), it sets the RLO to “0”
again following the edge evaluation.

You can directly process the RLO following an edge evaluation, e.g. link using bina-
ry logic operations, save in a memory function, or assign to a binary tag (a so-called
“pulse flag”). A pulse flag is used if the RLO of the edge evaluation is to be also pro-
cessed at another position in the program; it is quasi the intermediate memory for
a detected edge (the fleeting contact in the circuit diagram). Suitable binary tags for
the pulse flag are memory bits, data bits in global data blocks, and temporary and
static local data bits.

Also take note of the response of edge evaluation when switching on the CPU. If an
edge should not be detected, the RLO prior to edge evaluation and the signal state
of the edge trigger flag must be the same when switching on. It may be necessary –
depending on the desired response and the operand area used – to appropriately
set or reset the edge trigger flag during the startup.

Principle of operation of the positive edge (Fig. 10.11): a In the initial state, the sig-
nal being monitored for an edge, the edge trigger flag, and the pulse flag have sig-
nal state “0”. s The edge signal then changes its state from “0” to “1”. The signal
state of the edge trigger flag is initially still “0” so that a rising edge is detected and
the pulse flag is set to “1”. The edge trigger flag is updated to signal state “1”. d The
next processing cycle does not show a change in the signal state or edge signal
(comparison with signal state of edge trigger flag). The pulse flag is reset to “0”. f
No changes take place in the next processing cycles. g If the edge signal is reset to
state “0” again, the edge trigger flag is also updated and the initial state is reached.
The pulse flag was therefore only set to “1” for one processing cycle.

Functional principle of the negative edge: a In the initial state, the edge signal, the
edge memory bit, and the pulse flag have the signal state “0”. s The edge then
changes its signal state from “0” to “1”. This change is saved in the edge memory bit
which is also set to “1”. The pulse flag remains “0” since a falling edge is not present.
d There is no change in the next processing cycles. f The edge signal then changes
from “1” to “0”. The edge memory bit initially still has signal state “1” so that a fall-
ing edge is detected. The pulse flag is set to “1”, and the edge memory bit tracked
to “0”. g The pulse flag is reset to “0” again. The pulse flag was therefore only set
to “1” for the duration of one processing cycle.

10 Basic functions

340

10.3.2 Edge evaluation of the result of the logic operation

This edge evaluation generates a pulse when the result of the logic operation
changes (with ladder logic: change in the “current flow”). The P_TRIG box is avail-
able for evaluation of a positive edge, and the N_TRIG box for evaluation of a nega-
tive edge.

The positive edge evaluation generates the pulse upon a change in signal state
from “0” to “1” (rising edge) at the CLK input, the negative edge evaluation upon a
change in signal state from “1” to “0” (falling edge). The pulse is available at the Q
output of the edge evaluation.

Fig. 10.12 shows the representation and signal states of edge evaluation. The prin-
ciple of operation of edge evaluation is described in detail in Fig. 10.11: The edge
signal corresponds to the result of logic operation present at the CLK input, the
edge trigger flag corresponds to the binary tag named underneath the function,
and the pulse flag corresponds to the result of logic operation following the edge
evaluation.

In SCL, the edge evaluation can be emulated, for example, with the IF statement.
The scan “RLO differs from the signal state of the edge trigger flag” is programmed
with an AND function. The statements after THEN are processed only if the signal
states differ. The edge trigger flag is then updated so that a signal edge is no longer
detected during the next processing.

Fig. 10.11 Principle of operation of an edge evaluation in successive cycles

Edge
signal

Edge
signal

Edge
memory
bit

Edge
memory
bit

Pulse
flag

Pulse
flag

Positive edge evaluation, evaluation with rising edge

Negative edge evaluation, evaluation with falling edge

Description

Description Successive processing cycles

Successive processing cycles

Initial state
The rising edge is detected, the edge
memory bit is tracked, the pulse flag
is set
No edge any longer, the pulse flag
is reset
No change
The edge memory bit is tracked,
the initial state is subsequently
present again

Initial state
The edge memory bit is tracked
No change
The falling edge is detected, the edge
memory bit is tracked, the pulse flag
is set
No edge any longer, the pulse flag
is reset, the initial state is subsequently
present again

http://pnap.ir/siemens-s71200-price-list/

10.3 Edge evaluation

341

10.3.3 Edge evaluation of a binary tag

The edge evaluation of a binary tag is represented in the ladder logic as a contact,
above which the scanned binary tag and below which the edge trigger flag are
named. The pulse of the edge evaluation (quasi the signal state of the pulse flag) is
connected in series with the result of logic operation of the preceding logic opera-
tion. A positive, rising edge is detected by the P contact and a negative, falling edge
by the N contact.

In the function block diagram, the binary tag is named above the edge evaluation
box, and the edge memory bit below it. The Q output corresponds to the pulse flag.
A positive, rising edge is detected by the P box, and a negative, falling edge by the
N box.

In SCL, the edge evaluation can be emulated, for example, with the IF statement.
The scan “The signal states of the binary tag and edge trigger flag are different” is
programmed with an AND function. The statements after THEN are processed only

Fig. 10.12 Edge evaluation of result of logic operation (of the “current flow”)

LAD, FBD
P_TRIG-Box

LAD, FBD
N_TRIG-Box

SCL
SCL emulation
with the IF
statement

Positive (rising) edge

Negative (falling) edge

Edge memory bit 1

Edge memory bit 2

RLO1

RLO3

RLO2

RLO4

P_TRIG

N_TRIG

CLK

CLK

Q

Q

a

a

s

s

d

d

f

f

g

g

RLO1

RLO3

Processing cycles

Processing cycles

Edge memory bit 1

Edge memory bit 2

RLO2

RLO4

Function

Edge evaluation of result of logic operation (of “current flow”)

IF [RLO1] AND NOT Edge trigger flag1
THEN

END_IF;
Edge trigger flag1 := [RLO1];

IF NOT [RLO3] AND Edge trigger flag2
THEN

END_IF;
Edge trigger flag2 := [RLO3];

“0”

“0”

“1”

“1”

“1”

“0”

“0”

“0”

“1”

“0”

“0”

“1”

“0”

“0”

“1”

“1”

“1”

“0”

“0”“

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

//positive edge

//update edge trigger flag

//negative edge

//update edge trigger flag

(*...instructions [corresponds to RLO2]...*);

(*...instructions [corresponds to RLO4]...*);

P_TRIG: If a positive signal edge is detected at the CLK input, the Q output has signal state “1” for
the duration of one cycle (in processing cycle s in the table).

N_TRIG: If a negative signal edge is detected at the CLK input, the Q output has signal state “1”
for the duration of one cycle (in processing cycle d in the table).

http://pnap.ir/siemens-s71200-price-list/

10 Basic functions

342

if the signal states differ. The edge trigger flag is then updated so that a signal edge
is no longer detected during the next processing.

Fig. 10.13 shows the representation and signal states of edge evaluation. The prin-
ciple of operation of edge evaluation is described in detail in Fig. 10.11 on
Seite 340.

10.3.4 Edge evaluation with pulse output

The edge evaluation with pulse output generates a pulse at a binary tag from the
change in the result of the logic operation (the “current flow”). The positive edge
evaluation (P coil or P= box) generates the pulse upon a change in signal state
from “0” to “1” (rising edge), the negative edge evaluation (N coil or N= box) upon
a change in signal state from “1” to “0” (falling edge). In the event of an edge, the

Fig. 10.13 Edge evaluation of a binary tag

P

N

RLO1

RLO2

LAD
P contact

LAD
N contact

SCL

P box
FBD

N box
FBD

Positive (rising) edge

Negative (falling) edge

RLO1

RLO2

P

N

Function

Edge evaluation of a binary tag

//positive edge

END_IF;
Edge memory bit 1 := Binary tag 1; //update edge trigger flag

//negative edge

END_IF;
//update edge trigger flag

Binary tag 1

Edge memory bit 1

Binary tag 1

Edge memory bit 1

Binary tag 2

Edge memory bit 2

Binary tag 2

Edge memory bit 2

SCL emulation
with the IF
statement

“0”

“1”

“1”

“0” “1” “0”

“0”

“1”

“1” “0” “0”

“0” “0”

“0” “0”Binary tag 1

Processing cycles

Edge memory bit 1

RLO 1

“0”

“1”

“0”

“0” “0” “1”

“0”

“1”

“0” “0” “0”

“0” “0”

“0” “0”Binary tag 2

Processing cycles

Edge memory bit 2

RLO 2

P contact, P box: A positive signal edge of binary tag 1 generates signal state “1” for the duration
of one cycle on the current path or at the output (in processing cycle s in the table).

N contact, N box: A negative signal edge of binary tag 2 generates signal state “1” for the duration
of one cycle on the current path or at the output (in processing cycle d in the table).

IF Binary tag 1 AND NOT Edge memory bit 1
THEN (*...instructions [corresponds to RLO1]...*);

IF NOT IF Binary tag 2 AND Edge memory bit 2
THEN (*...instructions [corresponds to RLO2]...*);

Edge memory bit 2 := Binary tag 2;

10.3 Edge evaluation

343

binary tag has signal state “1” for the duration of one processing cycle. The result
of the logic operation following the contact or at the output of the box corre-
sponds to the result of the logic operation prior to the contact or box – it is simply
“passed on”.

In SCL the pulse flag is set to signal state “1” if the result of logic operation and the
signal state of the edge trigger flag are different. The edge trigger flag is then
updated so that a signal edge is no longer detected during the next processing and
the pulse flag is reset to signal state “0”.

The function of the edge evaluation is shown in Fig. 10.14; the description corre-
sponds to that in Fig. 10.12 on Seite 341. Here, the edge signal corresponds to the
result of preceding logic operation (the “current flow”).

Fig. 10.14 Edge evaluation with pulse output

SCL

Function

Edge evaluation with pulse output

//update edge trigger flag

//update edge trigger flag

LAD
P coil

LAD
N coil

FBD
P=-Box

FBD
N=-box

Edge memory bit 1

Edge memory bit 2

RLO1

RLO2

Pulse flag 1

Pulse flag 2

P

N

Positive (rising) edge

Negative (falling) edge

Edge memory bit 1

Edge memory bit 2

Pulse flag 1

Pulse flag 2

RLO1

RLO2

(RLO1)

(RLO2)

(RLO1)

(RLO2)

P=

N=

“0”

“0”

“1”

“1”

“1”

“0”

“0”

“0”

“1”

“0”

“0”

“1”

“0”

“0”

“1”

“1”

“1”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

“0”

RLO 1

RLO 2

Processing cycles

Processing cycles

Edge memory bit 1

Edge memory bit 2

Pulse flag 1

Pulse flag 2

Emulation
with the
IF statement

P coil, P=-box: If a positive signal edge occurs (RLO 1) in front of the P coil or at the input of the
P=-box, pulse flag 1 has signal state “1” for the duration of one cycle (in processing cycle in the
table). After the P-coil or P=-box, there is the same RLO as before the coil or box (RLO 1).

s

N coil, N=-box: If a negative signal edge occurs (RLO 2) in front of the N coil or at the input of the
N=-box, pulse flag 1 has signal state “1” for the duration of one cycle (in processing cycle in the
table). After the N-coil or N=-box, there is the same RLO as before the coil or box (RLO 2).

d

//The pulse flag is set with positive edge.

//The pulse flag is set with negative edge.

Pulse flag 1 := [RLO1] AND NOT Edge memory bit 1;
Edge memory bit 1 := [RLO1];
//During the next cycle the pulse flag will be reset.

//During the next cycle the pulse flag will be reset.

Pulse flag 2 := NOT [RLO2] AND Edge memory bit 2;
Edge memory bit 2 := [RLO2];

10 Basic functions

344

10.4 Time functions

10.4.1 Introduction

The timer functions implement timing processes in the user program such as wait-
ing and monitoring times, measurement of a time interval, or the generation of
pulses. The following timer functions are available:

b TP Pulse generation

b TON ON delay

b TOF OFF delay

b TONR Accumulating ON delay

Fig. 10.15 shows the statements in connection with the timer functions.

A time function is a statement with its own data. When programming a time func-
tion, you specify the data block in which the data is to be saved. If you select the
Single instance button, it must be a different data block each time. If you program a
time function in a function block, you can also select Multi-instance. The data of the
time function is then saved as a local instance in the instance data block of the func-
tion block.

The data structure of a timer function is mapped in the system data type (SDT)
IEC_TIMER. The individual components of the data structure is shown in Section
4.8.1 “IEC_TIMER system data type” on page 110.

The data from several timer functions can be stored in an instance data block under
different names. This reduces the number of required data blocks. You can also take
advantage of this when calling timer functions in FC and OB blocks: In a global data
block, you create a tag with the data type IEC_TIMER for each call of a timer function
and cancel the Call options dialog when programming the timer function. Instead,
you specify the tag name for the storage location of the instance data. Example: If
in the data block “Timer data” you create a Pulse tag with data type IEC_TIMER, you
can specify the instance name “Timer_Data”.Pulse when calling the timer function.

When calling a timer function TP, TON, TOF, or TONR, you must supply the start
input IN and the defined duration PT (preset time) with tags. Supplying of the timer
status Q and the elapsed time value ET is optional. You can scan the time status like
a binary tag at any point in the user program with Instance_Name.Q.

LAD and FBD know statements that only start a timer function, reset a timer func-
tion (RT, Reset Timer), and set a new duration (PT, Preset Timer).

The time functions run in the STARTUP and RUN modes.

Note that the instance data of a timer function is only updated if you call one of the
statements TP, TON, TOF, and TONR or on direct access to the structure compo-
nents Q (time status) and ET (current time value). Thus it may happen that the
scans of the time status or the current time value deliver different values at two dif-
ferent points in the program. You can avoid different values in a program cycle if

10.4 Time functions

345

Fig. 10.15 Statements for the timer functions

Name Declaration Data type Description

IN INPUT BOOL Start input

R INPUT BOOL Reset input *)

PT INPUT TIME

Q OUTPUT BOOL Timer status

ET OUTPUT TIME Elapsed time

IEC timer functions

Start and scan timer function

Start timer function

Start and scan timer function

Start timer function

Reset timer function

Reset timer function

Start and scan timer function Start instruction for local instance:

Start instruction for single instance:

#Local name(...);

"DB name".Fct(...);

Scan timer status for “1”

Scan timer status for “0”

Set duration

Scan timer status Scan time value

Set duration

SCL

Function (Fct):

Reset input Duration

Instance name

Instance name.Q

Instance name

Instance name.Q

PT

PT

LAD

FBD

IN

IN

R

PT

R

PT

Q

ET

ET

Q

Instance data

Fct
Time

Instance name

Instance name

Instance name

Duration

Reset input *)

Duration

Reset input *)

Duration

Zeitdauer

Start input

Start input

Start input

Timer status

Time value

Timer status

Time value

Reset input Duration

Fct

PT

Start input

Instance data

–()–

Value

TP Pulse generation
TON ON delay
TOF OFF delay
TONR Accumulating ON delay

Instance name (IN
PT

Q
ET

#var_time: = Instance name.ET;

RT

RT

Instance name

Scan timer status for “1”

Scan timer status for “0”

Instance name.Q

Instance name.Q

R
Timer status
Time value);

Start input,
Duration,
Reset input, *)

=>
=>

:=
:=
:=

#var_bool := Instance name.Q;

Preset duration

*) only available at TONR

Fct
Time

Fct
Time

http://pnap.ir/siemens-s71200-price-list/

10 Basic functions

346

you assign the time status and/or the current time value to a tag and then scan only
the tag.

The time functions are also referred to as “IEC time functions” to indicate that they
are different from the SIMATIC S7-300/400” SIMATIC time functions.

10.4.2 Pulse generation TP

The pulse generation shortens or extends an input signal to the programmed dura-
tion. Fig. 10.16 describes the time response based on the statement TP. The state-
ment RT is available to reset the timer function.

a s d The time function is started if the signal state at the IN start input of the
time function changes from “0” to “1”. It runs for the duration programmed at the
PT input, independent of the further sequence of the signal state at the start input.
The Q output delivers signal state “1” for as long as the time is running.

The ET output delivers the duration which has already expired. This duration starts
at T#0s and ends with the set duration PT. If the time has expired, ET remains at the
expired value until the signal state at the IN input changes to “0” again. If the IN in-
put has the signal state “0” before PT has expired, the ET output immediately
changes to T#0s following expiry of PT.

Resetting the timer function stops the current time when processing with signal
state “1”, and resets the current time value to zero. f If during the resetting the
signal state is “0” at the start input, output Q is also reset. g If during the resetting
the start input IN is assigned signal state “1”, output Q remains set to “1”. After – at
signal state “1” at the start input – the reset has been canceled, the timer starts
again.

Fig. 10.16 Time response when starting as pulse TP

Pulse generation TP

t = defined duration PT

Time status
Q

Current time
ET

Start input
IN

t t t tt
a s d f g

Reset
RT

Function

t

http://pnap.ir/siemens-s71200-price-list/

10.4 Time functions

347

10.4.3 On-delay TON

The ON delay delays an input signal by the programmed duration. Fig. 10.17
describes the time response based on the statement TON. The statement RT is avail-
able to reset the timer function.

a The timer function starts if the signal state at its start input IN changes from “0”
to “1”. It expires with the duration programmed at the PT input. Output Q delivers
signal state “1” if the time has expired and for as long as the start input is still “1”.
s The elapsed time is reset if the signal state at start input IN changes from “1” to
“0” before the time has expired. It starts again with the next positive edge at the IN
input.

The ET output delivers the expired time. This duration commences at T#0s and
ends at the preset time PT. If PT has expired, ET remains at the expired value until
the IN input changes again to “0”. If the IN input has signal state “0” prior to expiry
of PT, the ET output immediately changes to T#0s.

When processing with signal state “1”, resetting the timer function stops the cur-
rent time and resets the current time value back to zero. d The timer function
remains stopped as long as the reset signal state is “1”. If the start input IN has sig-
nal state “1” after the reset has signal state “0” again, the timer function starts
again. f If the time period has expired and the reset has “1”, output Q is reset to
signal state “0”.

10.4.4 OFF delay TOF

The OFF delay delays the switching off of an input signal by the programmed dura-
tion. Fig. 10.18 describes the time response based on the statement TOF. The state-
ment RT is available to reset the timer function.

Fig. 10.17 Time response when starting as ON delay TON

On-delay TON

t = defined duration PT

Time status
Q

Start input
IN

t t tt
a s d f

Current time
ET

Function

Reset
RT

t

http://pnap.ir/siemens-s71200-price-list/

10 Basic functions

348

a Output Q has signal state “1” if the signal state at start input IN of the timer func-
tion changes from “0” to “1”. If the signal state at the start input returns to “0”, the
time starts with the duration programmed at the PT input. Output Q remains at sig-
nal state “1” for as long as the time is running. Output Q is reset if the time has
expired. s The duration is reset and output Q remains “1” if the signal state at the
start input changes to “1” again before the time has expired.

The ET output delivers the expired time. This duration commences at T#0s and
ends at the preset time PT. If PT has expired, ET remains on the elapsed value until
input IN or reset RT has signal state “1”. If input IN has signal state “1” prior to
expiry of PT, output ET immediately changes to T#0s.

The reset of the timer function stops the current time when processing signal state
“1” and resets the current time value back to zero. d If the signal state at start input
IN is “1”, signal state “1” has no effect when resetting. f If start input IN changes
to “0” and the timer function is still running, the reset with signal state “1” resets
the duration and output Q is also reset to signal state “0”.

10.4.5 Accumulating ON delay TONR

The accumulating ON delay delays an input signal by the programmed duration,
where an interruption of the input signal prolongs the expiry of the duration
(Fig. 10.19).

a The timer function starts if the signal state at its start input IN changes from “0”
to “1”. It expires with the duration programmed at the PT input. Output Q delivers
signal state “1” if the time has expired, regardless of the further course of the signal
state at the start input. s If the signal state at start input IN changes from “1” to “0”
while the time is running, the timer function is stopped, but not reset. d If the sig-
nal state at the start input switches again to “1”, the timer function continues to run
from the interrupted time.

Fig. 10.18 Time response when starting as OFF delay TOF

Off-delay TOF

Time status
Q

Start input
IN

t tt t
a s d f

t = defined duration PT

Current time
ET

Reset
RT

Function

t

http://pnap.ir/siemens-s71200-price-list/

10.5 Counter functions

349

a s d With signal state “1”, the reset input R resets output Q to signal state “0”
and clears the time duration ET. The resetting of Q and deletion of ET take place
regardless of the signal state at the start input. fIf the reset input R is again “0”
while the start input IN is still “1”, the time starts again. g If the signal state at the
start input changes from “0” to “1” while the reset input R has signal state “1”, the
timer function is not started.

The RT function has the same effect as the reset input R. Resetting the timer func-
tion when processing with signal state “1” stops the current time running, sets the
time status to signal state “0”, and deletes the current time value.

10.5 Counter functions

10.5.1 Introduction

The counter functions perform counting tasks in the user program directly through
the CPU. The counter functions can count up and down; the numerical range corre-
sponds to the set data type. The counting frequency of the counter functions
depends on the execution time of the program. In order to count, the CPU must rec-
ognize a change in the signal state of the input pulse, i.e. the input pulse and the
pause must be present for at least one program cycle. The longer the program exe-
cution time, the lower the counting frequency.

The following counter functions are available:

b CTU Up counter

b CTD Down counter

b CTUD Up-down counter

The Fig. 10.20 shows the statements in connection with the counter functions.

Fig. 10.19 Time response when starting the accumulating ON delay

Retentive on-delay TONR

Reset
R or RT

Time status
Q

Start input
IN

Function
t t t2

t1 + t2 = t

t1 t
a gs d f

t = defined duration PT

Current time
ET

t

+

http://pnap.ir/siemens-s71200-price-list/

10 Basic functions

350

Fig. 10.20 Statements for the counter functions

IEC timer functions

Up counter Down counter Up-down counter

Up counter Down counter Up-down counter

Up counter Down counter Up-down counter

SCL

LAD

FBD

Instance name(
CU
CD
R
LD
PV
QU

CV
QD

Instance name(
CD
LD
PV
Q
CV

Instance name(
CU
R
PV
Q
CV

Counter status,
Count value);

Count up,
Reset input,
Default value,

=>
=>

:=
:=
:=

DeclarationCTUDCTDCTU

Name

CU–CU

CDCD–

R–R

LDLDx

PV

–

PVPV

QU

Q

–

–

Q

–

– QD

CVCVCV

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

Data type*)

BOOL

BOOL

BOOL

Data type*)

Count up input

Count down input

Reset input

Load input

Default value

Status_up

Counter status

Status_down

Count value

DescriptionData type

CTUD

CTUD

CU

CU

R

R

PV

PV

CD

CD

LOAD

LOAD

QU

QD

CV

QU

QD

CV

*) USINT, UINT, UDINT, SINT, INT, DINT

CTU
Data type

CTU

CU

CU

R

R

PV

PV

Q

CV

CV

Q

Instance name

Instance name

Instance name

Instance name

Instance name

Instance name

CTD

CTD

CD

CD

LOAD

LOAD

PV

PV

Q

CV

CV

Q

Parameter description

Data type

Data type

Data type

Data type

Data type

Counter status,
Count value);

Count down,
Load input,
Default value,

=>
=>

:=
:=
:=

Start instruction for local instance:

Start instruction for single instance:

#Local name(...);

"DB name".Fct(...);

Count up,
Count down,
Reset input,

:=
:=
:=

Status_down,
Count value);

Load input,
Default value,

=>
=>

:=
:=

Status_up,=>

http://pnap.ir/siemens-s71200-price-list/

10.5 Counter functions

351

A counter function is a statement with its own data. When programming a counter
function, you specify the data block in which the data is to be saved. If you select the
Single instance button, it must be a different data block each time. If you program a
counter function in a function block, you can also select Multi-instance. The data of
the counter function is then saved as a local instance in the instance data block of
the function block.

The count value of a counter function can be set when programming for the data
types SINT, INT, DINT, USINT, UINT, and UDINT. The data structure of a counter
function is dependent on this setting. The setup of the data structure is shown in
Section 4.6.2 “Parameter types for IEC counter functions” on page 108.

The data from several counter functions can be stored in an instance data block
under different names. This reduces the number of required data blocks. You can
also take advantage of this when calling counter functions in FC and OB blocks: In
a global data block, you create a tag with the data type IEC_xCOUNTER for each call
of a counter function and cancel the Call options dialog when programming the
counter function. Instead, when calling the counter function you then specify the
tag name for the storage location of the instance data. Example: If in the data block
“Counter data” you create a Number tag with the data type IEC_COUNTER, you can
specify the instance name “Counter_Data”.Number when programming the counter
function.

When calling a counter function CTU, CTD, or CTUD, you must supply a start input
and the defined count value PV (preset value) with tags. Supplying of the counter
status Q (QU, QD) and the current count value CV is optional. You can scan the
counter status like a binary tag at any point in the user program with
Instance_Name.Q.

The counter functions execute in the STARTUP and RUN modes.

The counter functions are also referred to as “IEC counter functions” to indicate
that they are different from the SIMATIC S7-300/400 “SIMATIC counter functions”.

In addition to the counter functions, high-speed counters are integrated in the CPU.
These counters are independent of the program execution time (see Chapter 17.1.1
“High-speed counter (HSC)” on page 548).

10.5.2 Up counter CTU

If the signal state at the count up input CU changes from “0” to “1” (positive edge),
the current count value is incremented by 1 and is indicated at the CV output. If the
current count value reaches the upper limit of the set data type, it is no longer
incremented. A positive edge at CU then has no effect. Fig. 10.21 describes the
count behavior of the up-counter.

The counted value is reset to zero if the reset input R has signal state “1”. A positive
edge at CU has no effect as long as the R input has signal state “1”.

The Q output has the signal state “1” if the actual counted value is greater than or
equal to the defined counted value (CV PV).

10 Basic functions

352

10.5.3 Down counter CTD

If the signal state at the down-counter input CD changes from “0” to “1” (positive
edge), the current count value is decremented by 1 and is present at the CV output.
If the current count value reaches the lower limit of the selected data type, it is no
longer decremented. A positive edge at CD then has no effect. Fig. 10.22 describes
the count behavior of the down-counter.

The count value CV is set to the specified count value PV if the LOAD input has signal
state “1”. A positive edge at the CD input has no effect for as long as the LOAD input
has signal state “1”.

Fig. 10.21 Count behavior of the CTU up-counter

Fig. 10.22 Counter behavior of the CTD down-counter

Up counter CTU

Function

Count up
input CU

Reset
input R

Count
value CV

Default
value PV

Counter
status Q

0

1

2

3

4

5

6

0

1

2

3

4

Down counter CTD

Function

Count down
input CD

Load input
LOAD

Count
value CV

Default
value PV

Counter
status Q

0

1

2

3

4

5

0

5

2

3

4

http://pnap.ir/siemens-s71200-price-list/
http://pnap.ir/siemens-s71200-price-list/

10.5 Counter functions

353

The Q output has the signal state “1” if the actual counted value is less than or equal
to zero (CV 0).

10.5.4 Up-down counter CTUD

If the signal state at the count up input CU changes from “0” to “1” (positive edge),
the count value is incremented by 1 and is indicated at the CV output. If the signal
state at the count down input CD changes from “0” to “1” (positive edge), the count
value is decremented by 1 and is present at the CV output. If both count inputs have
a positive edge, the current count value is not changed. The Fig. 10.23 describes the
count behavior of the up/down-counter.

If the actual counted value reaches the upper limit of the selected data type, it is no
longer incremented. A positive edge at the count up input CU then has no effect.
If the actual counted value reaches the lower limit of the selected data type, it is no
longer decremented. A positive edge at the count down input CD then has no effect.

The actual counted value CV is set to the pre-defined counted value PV if the LOAD
input has signal state “1”. Positive signal edges at the counting inputs CU and CD
have no effect as long as the LOAD input has signal state “1”.

The counted value is reset to zero if the reset input R has signal state “1”. Positive
signal edges at the counting inputs CU and CD and signal state “1” at the LOAD in-
put have no effect as long as the R input has signal state “1”.

Fig. 10.23 Up/down-counter CTUD, representation and function

Function

Up-down counter CTUD

Count up
input CU

Count down
input CD

Reset
input R

Load input
LOAD

Count
value CV

Default
value PV

Counter
status QU

Counter
status QD

0

1

2

3

4

5

4

3

2

3

4

0

http://pnap.ir/siemens-s71200-price-list/

10 Basic functions

354

The QU output has the signal state “1” if the actual counted value is greater than or
equal to the defined counted value (CV PV).

The QD output has the signal state “1” if the actual counted value is less than or
equal to zero (CV 0).

11 Digital functions

355

11 Digital functions

This chapter describes the digital functions which mainly link digital tags together,
for example the basic arithmetic operations for the arithmetic functions. As far as
possible, the description is independent of the programming language.

The Chapters 7 “Ladder logic LAD” on page 209, 8 “Function block diagram FBD” on
page 246, and 9 “Structured Control Language SCL” on page 284 describe how you
can program the functions using the individual programming languages and what
special features exist.

The digital functions are implemented internally – not visible to you as the user –
either by means of basic instruction sequences or by calling a system or standard
block. Therefore you can find the digital functions in the program elements catalog
under Basic instructions and Extended instructions. The following digital functions
are available with a CPU 1200:

b The transfer functions transfer the value of a (digital) tag or memory area.

b The comparison functions generate a binary result by comparing two tags.

b The arithmetic functions for numerical values link two tags with data types
fixed-point and floating-point data types in accordance with the basic arithmetic
operations.

b The arithmetic functions for time values link two tags with data types DTL,
TOD, DATE, and TIME.

b The math functions convert the value of a tag with data type REAL or LREAL in
accordance with the specified function, for example calculation with a trigono-
metric function.

b The conversion functions convert the data type of a tag.

b The shift functions shift the content of a tag bit by bit to the right or left.

b The logic functions comprise, for example, the word logic operations, which
link two tags bit by bit, and the selection and limiting functions.

b The functions for strings process tags with data type STRING. Two strings
can be combined, for example.

b In LAD and FBD, the CALCULATE box allows a complex, user-defined logical
operation with logical, arithmetic, and mathematical functions.

The “simple” digital functions are boxes in the case of LAD and FBD (with LAD, the
comparison is a contact) and arithmetic, logic and comparison expressions in the
case of SCL.

11 Digital functions

356

11.1 Transfer functions

11.1.1 Introduction

The transfer functions allow values to be exchanged between tags. The tags can also
be overwritten with fixed values (constants). The tags – except data type BOOL – can
be of all data types; any limitations are referred to in the respective functional de-
scriptions. The transfer function is executed when the EN input has signal state “1”
or is unused. The ENO output has signal state “0” if the box has not been processed
(EN = “0”) or if an error has occurred during box processing.

The following transfer functions are available:

b MOVE-Box, S_MOVE-Box
Copy tag content (LAD, FBD)

b Value assignment
Copy the value of a tag or of an expression (SCL)

b MOVE_BLK box
Copy data area

b UMOVE_BLK box
Copy data area without interruption

b FILL_BLK box
Fill the data area

b UFILL_BLK box
Fill the data area without interruptions

b READ_DBL, WRIT_DBL
Transfer data area from and to load memory

b SWAP box
Swap bytes

The FieldRead and FieldWrite functions, which in STEP 7 V10.5 allowed field com-
ponents to be addressed with a variable index, is still available in STEP 7 V11, but is
no longer required. With indirect addressing of field components, there is a more
elegant way.

11.1.2 Copy tag, MOVE box for LAD and FBD

The MOVE box transfers the content of the tag at the IN parameter to the tag at the
OUT1 parameter (Fig. 11.1). If there is a tag with elementary data type at parameter
IN, the MOVE box can be expanded with additional outputs OUT2, OUT3, etc. using
the command Insert output from the shortcut menu. The content of the input tag is
then transferred to all box inputs. A tag with elementary data type can also be a
component of a structured data type.

11.1 Transfer functions

357

The tags at the parameters IN and OUT1 or OUTn can have different types of data.
Which data types are allowed depends on the block attribute IEC check (Table 11.1).
If the data width of the target tags is smaller than the data width of the tags at
parameter IN, the higher-level bits are “cut off” and lost. If the data width of the tar-
get tag is larger, the higher-level bits are filled with zeros.

The MOVE box can also transfer tags with structured data type, tags with hardware
data type, PLC data type, system data type, and entire data blocks that are derived
from a data type (type data blocks). In these cases, the data types at IN and OUT1
must always coincide. An extension of the box outputs (with OUT2, OUT3, etc.) is
then not possible.

11.1.3 Copy string, S_MOVE box for LAD and FBD

The S_MOVE box transfers the content of the tag at the IN parameter to the tag at the
OUT parameter (Fig. 11.2). The tags are of data type STRING.

If the target tag is greater than the source tag, the source tag is transferred com-
pletely to the target tag and the current length is updated.

Fig. 11.1 MOVE box, representation and function

Fig. 11.2 S_MOVE box, representation and function

DeclarationName

EN

ENO

IN

OUT1

–

–

INPUT

OUTPUT

*) see text

BOOL

BOOL

*)

*)

Enabling input

Enabling output

Source tag

First target tag

DescriptionData typeMOVE MOVE

EN EN

IN IN

ENO OUT1

OUT1 ENO

MOVE box

LAD FBD

Function:

*
*

The value at the IN parameter is transferred to the OUT1 parameter. If the tag at the IN parameter
has an elementary data type, the number of output parameters can be increased.

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

STRING

BOOL

STRING

Source tag

Target tag

DescriptionData typeS_MOVE S_MOVE

EN EN

IN IN

ENO OUT

OUT ENO

S_MOVE box

LAD FBD

Function:
The value at the IN parameter is transferred to the OUT parameter.

Enabling input

Enabling output

http://pnap.ir/siemens-s71200-price-list/

11 Digital functions

358

If the target tag is smaller than the source tag, only as many characters are trans-
ferred as will fit in the target tag. The current length is given the value of the max-
imum length and the ENO output is set to signal state “0”.

11.1.4 Value assignments with SCL

A value assignment transfers the value of an expression to a tag. On the left of the
assignment operator is the output tag, which accepts the value of the expression
positioned on the right. The expression can be a constant, a single tag, a combina-
tion of tag values, or a function whose function value is assigned to the output
parameter.

Table 11.1 Data types for the MOVE box

Source (IN) Target (OUT1)

with IEC check without IEC check

BYTE BYTE, WORD,
DWORD

BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT,
TIME, DATE, TOD, CHAR

WORD WORD, DWORD BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT,
TIME, DATE, TOD, CHAR

DWORD DWORD BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, REAL,
TIME, DATE, TOD, CHAR

SINT SINT BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, TIME, DATE, TOD

INT INT BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, TIME, DATE, TOD

DINT DINT BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, TIME, DATE, TOD

USINT USINT, UINT,
UDINT

BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, TIME, DATE, TOD

UINT UINT, UDINT BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, TIME, DATE, TOD

USINT UDINT BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, TIME, DATE, TOD

REAL REAL DWORD, REAL

LREAL LREAL LREAL

TIME TIME BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, TIME

DATE DATE BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, DATE

TOD TOD BYTE, WORD, DWORD, SINT, INT, DINT, USINT, UINT, UDINT, TOD

DTL DTL DTL

CHAR CHAR BYTE, WORD, DWORD, character *)

Character *) Character *) CHAR, character *)

ARRAY ARRAY ARRAY

STRUCT STRUCT STRUCT

*) Individual character of a string (STRING data type)

11.1 Transfer functions

359

#Output_tag := #Input_tag; //Assignment of tag value

The data type of the value assignment is determined by the output tag. The data
types on both sides of the assignment operator must be the same. Exception: With
the IEC check block attribute deactivated, the “implicit data type conversion” is
applicable, see Chapter 4.2.3 “Absolute addressing of an operand area” on page 86.

Assignment for elementary data types

A constant value, a different tag, or an expression can be assigned to a tag or oper-
and.

Absolutely addressed operands (e.g. %MW10) have one of the data types BOOL,
BYTE, WORD, or DWORD. If you wish to assign a value with a different data type to
an absolutely addressed operand, you can use the data type conversion or assign a
name and the desired data type to the operand in the PLC tag table.

Assignment of DTL tags

Every DTL tag can be assigned another DTL tag or a DTL constant. A single compo-
nent can be used like a tag with the data type of the component. Example: In the
#Delivery_date tag with the DTL data type, the hour should be set:

#Delivery_date.HOUR := #Hour; //Data_type USINT

Assignment of STRING tags

Every STRING tag can be assigned another STRING tag or a STRING constant. If the
source tag is smaller than the target tag to the left of the assignment operator, all
characters are transferred and the current length is updated. If the source tag is
longer, only as many characters are transmitted as will fit in the target tag and the
current length is set to the maximum length.

A STRING tag can be assigned a tag with data type CHAR. Example:

#String := #Single_character;

Assignment of STRUCT tags or PLC data types

A STRUCT tag or PLC data type can only be assigned to another STRUCT tag or PLC
data type if

b the data structures agree,

b the data types of the structure components agree, and

b the names of the structure components agree.

Individual structure components can be handled like tags of the corresponding
data type, for example a structure component #Motor1.Setpoint with data type INT
can be assigned to another INT tag, or an INT value can be assigned to this struc-
ture component.

11 Digital functions

360

Assignment of ARRAY tags

An ARRAY tag can only be assigned to another ARRAY tag if the data types of the
array components as well as the array limits with smallest and largest array index
agree with each other.

Individual array components can be handled like tags of the corresponding data
type. Example: If #Measured_values is a field of REAL components, and #Index is a
tag with the data type INT, a field component can be assigned the value of the
#Width tag with data type REAL:

#Measured_values[#Index] := #Width;

11.1.5 Copy data area (MOVE_BLK, UMOVE_BLK)

MOVE_BLK and UMOVE_BLK transfer the contents of sequential components of an
ARRAY tag to components of another ARRAY tag. The source area is defined by the
start tag at parameter IN, and the target area by the start tag at parameter OUT. As
many values are copied as the number specified at the COUNT parameter (Fig.
11.3).

Fig. 11.3 MOVE_BLK and UMOVE_BLK box, representation and function

DeclarationName

EN

ENO

IN

COUNT

OUT

–

–

INPUT

INPUT

OUTPUT

*) see text

BOOL

BOOL

ARRAY[n] *)

*)

ARRAY[n] *)

Enabling input

Enabling output

Source tag

Number

Target tag

DescriptionData typeFunction Function

EN EN

IN IN

ENO

ENO

OUT OUT

MOVE_BLK box, UMOVE_BLK box

LAD

SCL

Funktion:

MOVE_BLK
UMOVE_BLK

FBD

COUNT COUNT

Parameter IN Parameter OUT

COUNT

ARRAY tag (source) ARRAY tag (target)

Data type:

IN, OUT:

COUNT:

Function (IN := ,... COUNT := , OUT =>);... ...

The contents of the source tags are trans-
ferred to the ARRAY tags at the OUT para-
meter into the number of components that
is specified at the COUNT parameter.
The component specified at the OUT para-
meter is the start component for the target.

Move data area
Move data area
without interruption

ARRAY[n] means a component (an element) of a tag with data type ARRAY.
This component has an elementary data type.

for LAD and FBD: UINT (with activated attribute IEC check)
for SCL: USINT, UINT, UDINT (with activated attribute IEC check)

http://pnap.ir/siemens-s71200-price-list/

11.1 Transfer functions

361

With the IEC check activated, the tags at the IN and OUT parameters must have the
same data type; if the attribute IEC check is not activated in the block, it is only nec-
essary for the data widths to agree.

MOVE_BLK copies the values so that the process can be interrupted by a higher-pri-
ority program (advantage: quick response time to alarms). UMOVE_BLK copies
without interruption (advantage: transfer of consistent data areas). During transfer
by UMOVE_BLK, alarm events that occur are stored and processed after the transfer
ends.

MOVE_BLK and UMOVE_BLK report an error (ENO = “0”) if a range limit is exceeded
during runtime. No values are copied if an error occurs.

11.1.6 Filling the data area (FILL_BLK, UFILL_BLK)

FILL_BLK and UFILL_BLK transfer the content of a tag to sequential components
of an ARRAY tag. The source tag is defined by parameter IN and the target area by
the start tag at parameter OUT. As many values are copied as the number specified
at the COUNT parameter (Fig. 11.4).

Fig. 11.4 FILL_BLK and UFILL_BLK box, representation and function

DeclarationName

EN

ENO

IN

COUNT

OUT

–

–

INPUT

INPUT

OUTPUT

*) Same data width at IN and OUT

BOOL

BOOL

Data type *)

UINT

ARRAY[n] *)

DescriptionData typeFunction Function

EN EN

IN IN

ENO

ENO

OUT OUT

FILL_BLK box, UFILL_BLK box

LAD

Funktion:

FILL_BLK
UFILL_BLK

FBD

COUNT COUNT

Parameter IN Parameter OUT

COUNT

Source tag

ARRAY tag (target)

SCL

Data type:

IN, OUT:

COUNT:

Function (IN := ... , COUNT := ... , OUT => ...);

Enabling input

Enabling output

Source tag

Number

Target tag

Fill data area
Fill data area
without interruption

The contents of the source tags are trans-
ferred to the ARRAY tags at the OUT para-
meter into the number of components that
is specified at the COUNT parameter.
The component specified at the OUT para-
meter is the start component for the target.

ARRAY[n] means a component (an element) of a tag with data type ARRAY.
This component has an elementary data type.

for LAD and FBD: UINT (with activated attribute IEC check)
for SCL: USINT, UINT, UDINT (with activated attribute IEC check)

11 Digital functions

362

With the IEC check activated, the tags at the IN and OUT parameters must have the
same data type; if the IEC check attribute is not activated in the block, it is only nec-
essary for the data widths to agree.

FILL_BLK copies the values so that the process can be interrupted by a higher-pri-
ority program (advantage: quick response time to alarms). UFILL_BLK copies with-
out interruption (advantage: transfer of consistent data). During transfer by
UFILL_BLK, alarm events that occur are stored and processed after the transfer
ends.

FILL_BLK and UFILL_BLK report an error (ENO = “0”) if a range limit is exceeded
during runtime. No values are copied if an error occurs.

11.1.7 Read and write the load memory (READ_DBL, WRIT_DBL)

A data block is normally present twice in the user memory: The data block with dec-
laration of the data tags and start values is present in the load memory and with the
actual values with which the user program is working in the work memory.
READ_DBL transmits a data block or a data area – for example, recipe data – from
the load memory to the work memory. WRIT_DBL transmits a data block or a data
area – for example, archive data – from the work memory to the load memory. Both
the source and the target data blocks must have the same access type: The block
attribute Optimized block access must be either enabled or disabled in both data
blocks. Fig. 11.5 shows the graphic representation of these functions.

Fig. 11.5 Transfer data areas from and to the load memory

Function

VARIANT

Function

VARIANT

REQ

EN

SRCBLK

REQ

EN

SRCBLK

RET_VAL

ENO

RET_VAL

BUSY

DSTBLK

BUSY

DSTBLK

ENO

DeclarationName

EN

ENO

REQ

SRCBLK

RET_VAL

BUSY

DSTBLK

–

–

INPUT

INPUT

RETURN

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

VARIANT

INT

BOOL

VARIANT

Start

Source area

Error information

In progress

Destination area

DescriptionData typeLAD

Function:

READ_DBL
WRIT_DBL

Transfer data area from the load memory to the work memory

FBD

SCL

Error information
...

:= (
REQ := ,

Function

SRCBLK := ,
BUSY => ,
DSTBLK =>);

...

...

...

READ_DBL, WRIT_DBL

The parameters SRCBLK and DSTBLK can be provided with entire data blocks, with absolutely
addressed data areas (in the pointer form: P#DBz.DBXy.x Data type Number), and with a tag
within a data block.

Transfer data area from the work memory to the load memory

Enabling input

Enabling output

11.1 Transfer functions

363

Complete data blocks or parts of data blocks are permissible as actual parameters
at the SRCBLK and DSTBLK block parameters. They can be supplied with:

b entire data blocks that are derived from a PLC data type or system data type,

b Tags from the data blocks, and

b – for data blocks with a disabled Optimized block access attribute – with an
absolutely addressed data area, e.g. P#DB100.DBX16.0 BYTE 64 (see Chapter
4.2.3 “Absolute addressing of an operand area” on page 86 for description).

The READ_DBL and WRIT_DBL functions work asynchronously: They trigger the
transfer process by signal state “1” at the REQ parameter. You may only access the
read and written data areas again when the parameter BUSY has signal state “0”
again. Also observe the CPU's system resources when using asynchronous system
functions.

If the source area is smaller than the destination area, the source area is written
completely into the destination area. The remaining bytes of the destination area
are not changed. If the source area is larger than the destination area, the destina-
tion area is written completely; the remaining bytes of the source area are ignored.

Note that the load memory only permits a limited number of write operations as a
result of the physical design. Too frequent writing, e.g. writing in every program
cycle, reduces the service life of the load memory.

11.1.8 Swap bytes (SWAP)

SWAP reads the tag at the IN parameter, exchanges its bytes, and makes the result
available at the OUT parameter. If the block attribute IEC check is enabled, the data
types WORD and DWORD are permitted at the IN and OUT parameters. If the block

Fig. 11.6 Swap bytes with SWAP

DeclarationName

EN
ENO

IN
OUT

–
–

INPUT
OUTPUT

BOOL
BOOL

Datentyp
Datentyp

DescriptionData typeSWAP SWAP

EN EN

Data type Data type

IN IN

ENO OUT

OUT ENO

SWAP box

LAD FBD

Parameter IN

Parameter OUT

Data type:

Datenbreite:

DWORD WORD

Byte c Byte a

Byte b Byte b

Byte b

Byte c

Byte a

Byte d

Byte d Byte b

Byte a Byte a

Function:
The bytes of the tag at the IN parameter are output in the reverse order at the OUT parameter.

SCL
OUT := (SWAP IN);

Enabling input
Enabling output

Input
Output

11 Digital functions

364

attribute is disabled, you can create word-wide or doubleword-wide tags. The data
types may differ, but not the data widths (Fig. 11.6).

11.2 Comparison functions

11.2.1 Overview

A comparison function compares the values of two tags with each other, or checks
whether a tag value is within or outside a certain range. A comparison function
delivers a binary comparison result.

The following comparison functions are available:

b The comparison of two tag values for equal, not equal, greater than,
greater than or equal to, less than, and less than or equal to

b The range comparison

11.2.2 Comparison of two tag values

The comparison function for two tag values compares the contents of both input
tags and forms the comparison result according to the comparison function. The

Fig. 11.7 Comparison function, comparison of two values

DeclarationName

IN1

IN2

–

INPUT

INPUT

OUTPUT

Data type

Data type

BOOL

Input tag 1

Input tag 2

DescriptionData typeFunction
Data type

IN1

LAD FBD

IN2

Function
Data type

IN1

IN2

SCL Result of comparison := IN1 IN2;Function

Comparison function, compare two values

BYTE,
WORD,
DWORD

Function: Data types:

USINT,
UINT,
UDINT

==
<>

equal to
not equal to

>
>=

<
<=

greater than
greater than
or equal to
less than
less than
or equal to

SINT,
INT,
DINT

REAL,
LREAL

CHAR,
STRING

TIME,
DTL

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

–
–

–
–

IN1 <Comparison> IN2

Tags with the following data types can be compared to each other:

> USINT, UINT, UDINT, SINT, INT, DINT, REAL and LREAL
> BYTE, WORD, DWORD

Tags with the other data types can only be compared with the same data type.

Result of comparison

11.2 Comparison functions

365

comparison result is “1” if the comparison is fulfilled, otherwise “0”. The data types
allowed for the comparison function types are listed in Fig. 11.7.

The comparison of numerical values to the data types USINT, UINT, UDINT, SINT,
INT, DINT, REAL, and LREAL is made within the framework of the specified data
type. When comparing, different data types can be used if they can be converted to
the respective “most powerful” data type using the implicit data type conversion
and thus become comparable (see Chapter 4.3.2 “Implicit data type conversion” on
page 93). The “most powerful” data type must then be set at the comparison func-
tion.

When comparing tags with the data types BYTE, WORD, and DWORD, the data types
can be different. In the comparison function, the data type must then be set with
the larger data width.

A prerequisite for a fulfilled comparison of floating-point numbers is that they are
valid. If an invalid floating-point number is compared, the comparison is always in-
valid.

The comparison of character values CHAR and STRING is carried out in the context
of ASCII coding. Two strings are identical if the relevant (occupied) characters are
the same and the actual length is the same. If the first characters are identical, a
string is considered to be greater if it is longer. The maximum lengths of the strings
are not included in the comparison.

The comparison of time values TIME and DTL is carried out in the context of the
specified data type. A point in time (date, time) is considered as smaller if the nu-
merical value is smaller, i.e. if the point in time is older.

11.2.3 Range comparison

The range comparison checks whether the value of a digital tag is within or outside
a range of values defined by limits (Fig. 11.8).

Fig. 11.8 Range comparison

DeclarationName

MIN

MAX

IN

–

INPUT

INPUT

INPUT

OUTPUT

Data type

Data type

Data type

BOOL

DescriptionData type

MIN

MIN

Range comparison

IN

IN MAX

MAX

Function:

IN_RANGE
OUT_RANGE

within the range
outside the range

:= MIN ≤ IN ≤ MAX
:= MIN > IN > MAX

Data type:

USINT, UINT, UDINT,
SINT, INT, DINT, REAL, LREAL

SCL Result of comparison := (IN >= MIN) AND (IN <= MAX); //IN_RANGE
:= (IN < MIN) OR (IN > MAX); //OUT_RANGEResult of comparison

Function
Data type

Function
Data type

LAD FBD

Lower limit

Upper limit

Input tag

Result of comparison

11 Digital functions

366

The comparison is fulfilled (comparison result = “1”) if the digital value for the
function IN_RANGE is within the range or if the digital value for OUT_RANGE is out-
side the range. The limits (MIN, MAX) and the digital tag to be compared (IN) are at
the inputs of the box. The binary comparison result is available at the unlabeled
output of the box.

All fixed-point and floating-point numbers are permitted as data types of the input
parameters. The data types at the input parameters can be different if they can be
changed to the “most powerful” data type with the implicit conversion and thus
compared. For different data types, the “most powerful” data type is specified in the
box.

The lower limit and upper limit may also be assigned constants. If invalid floating-
point numbers are specified, the comparison is not fulfilled.

11.3 Arithmetic functions for numerical values

11.3.1 Introduction

The arithmetic functions for numerical values link two values according to the
basic arithmetical operations addition, subtraction, multiplication, and division
(Fig. 11.9). The arithmetic functions include absolute value generation, changing
the sign (negation), and changing the value by 1 (decrementing, incrementing).

LAD and FBD: An arithmetic function is executed if the enable input EN is not con-
nected, or if “1” is present at the enable input, or if “current” flows into the enable

Fig. 11.9 Arithmetic functions for numerical values, representation and function

EN EN

OUT OUT

ENO

ENO

Arithmetic functions for numerical values

IN1 IN1

IN2 IN2

Function:

LAD/FBD SCL

ADD + Addition
SUB – Subtraction
MUL * Multiplication
DIV / Division
MOD MOD Division with remainder as result

Data type: USINT, UINT, UDINT,
SINT, INT, DINT

REAL, LREAL (not with MOD)

Name

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

SCL OUT := IN1 IN2;Function

Declaration

Enabling input

Enabling output

Input tag 1

Input tag 2

Result

DescriptionData type
Data type Data type
Function FunctionLAD FBD

If different data types are specified,
the result adopts the “most powerful”
data type.

11.3 Arithmetic functions for numerical values

367

input. If an error occurs during calculation, the enable output ENO is set to “0”, oth-
erwise to “1”. If the execution of the function is not enabled (EN = “0”), the calcula-
tion does not take place and ENO is also “0”.

SCL: The basic arithmetical operations are implemented with an arithmetic expres-
sion in which two or more tags are linked. The result of an arithmetic expression
can in turn be used in another arithmetic expression. If, during the execution of an
arithmetic function, an error such as exceeding a number range occurs, the ENO
tag is set to FALSE (signal state “0”).

11.3.2 Addition ADD

The ADD function interprets the values present at the IN1 and IN2 inputs as num-
bers with the specified data type. It adds the two numbers, and saves the total at the
OUT output. Leaving the permissible range is reported by ENO = “0”.

Floating-point addition: with an impermissible calculation (one of the input values
is an invalid floating-point number, or you attempt to add + and -), ADD delivers
an invalid value at the OUT output and sets ENO to “0”.

11.3.3 Subtraction SUB

The SUB function interprets the values present at the IN1 and IN2 inputs as num-
bers with the specified data type. It subtracts the value at IN2 from the value at IN1,
and saves the difference at the OUT output. Leaving the permissible range is report-
ed by ENO = “0”.

Floating-point subtraction: with an impermissible calculation (one of the input val-
ues is an invalid floating-point number, or you attempt to subtract + from + or -
 from -), SUB delivers an invalid value at the OUT output and sets ENO to “0”.

11.3.4 Multiplication MUL

The MUL function interprets the values present at the IN1 and IN2 inputs as num-
bers with the specified data type. It multiplies the two numbers, and saves the prod-
uct at the OUT output. Leaving the permissible range is reported by ENO = “0”.

Floating-point multiplication: In an unauthorized calculation (one of the input val-
ues is an invalid floating point number, or you try to multiply with 0), MUL sup-
plies an invalid value at OUT and sets ENO to “0”.

11.3.5 Division DIV

Fixed-point division: the DIV function interprets the values present at the IN1 and
IN2 inputs as numbers with the specified data type. It divides the value at input IN1
(dividend) by the value at input IN2 (divisor) and delivers the quotient at the
OUT output. This is the integer result of the division. The quotient is zero if the div-
idend is equal to zero and the divisor is not equal to zero, or if the value of the div-

11 Digital functions

368

idend is smaller than the value of the divisor. The quotient is negative if the divisor
is negative. A division by zero delivers a value of zero as the quotient, and sets ENO
to “0”.

Floating-point division: the value at the IN1 parameter is divided by the value at the
IN2 parameter, and the result output at the OUT parameter. With an impermissible
calculation (one of the input values is an invalid floating-point number, or you at-
tempt to divide by or 0 by 0), DIV delivers an invalid value at the OUT output
and sets ENO to “0”.

11.3.6 Division with remainder as result MOD

The MOD function interprets the values present at the IN1 and IN2 inputs as numbers
with the specified data type. It divides the value at input IN1 (dividend) by the value at
input IN2 (divisor) and saves the remainder of the division at the OUT output. The
remainder refers to the remaining part of the division, and does not correspond to the
decimal positions. With a negative dividend, the remainder is also negative.

A division by zero delivers a value of zero as the remainder, and sets ENO to “0”.
The MOD function does not allow tags of data type REAL or LREAL.

11.3.7 Generation of absolute value ABS

The ABS function generates the absolute value from the number at the IN parame-
ter and outputs the result at the OUT parameter. With a floating-point number, the
sign of the mantissa is set to “0”, even if the number is invalid.

If the allowed number range is exceeded, for example ABS(–128) for data type
SINT, or for a valid floating-point number, the ENO output has signal state “0”
(Fig. 11.10).

Fig. 11.10 Absolute value generation and negation, representation and function

EN EN
OUT

OUTENO
ENO

Generation of absolute value, negation

IN IN

Function:

ABS
NEG

Generation of absolute value
Negation

Data type:

SINT, INT, DINT, REAL, LREAL

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

DescriptionData type

SCL OUT := ABS(IN1); //Generation of absolute value
OUT := -IN; //Negation (two's complement)

Enabling input

Enabling output

Input tag

Result

LAD FBDFunction
Data type

Function
Data type

11.4 Arithmetic functions for time values

369

11.3.8 Negation NEG

The NEG function reverses the sign of the number at the IN parameter and outputs
the result at the OUT parameter. The negation is equivalent to a multiplication by –
1. With a floating-point number, the sign of the mantissa is changed, even if the num-
ber is invalid (Fig. 11.10).

If the result is out of the valid number range, e.g .NEG(–128) for the data type SINT,
the enable output ENO is set to signal state “0”.

11.3.9 Decrement DEC, increment INC

The function DEC (decrement) reduces the value at the IN/OUT parameter by 1 as in
a subtraction. The function INC (increment) increases the value at the IN/OUT
parameter by 1 as in an addition (Fig. 11.11).

LAD, FBD: When reaching the lowest and highest numerical value for the data type,
the enable output ENO is set to signal state “0”.

SCL: If the allowed number range is exceeded, the ENO tag is set to FALSE (signal
state “0”).

11.4 Arithmetic functions for time values

11.4.1 Introduction

The arithmetic functions for time values link durations (data type TIME) and points
in time (data type DTL) together.

An arithmetic function is executed if the enable input EN is not connected, or if “1”
is present at the enable input, or if “current” flows into the enable input. If an error

Fig. 11.11 Decrementing and incrementing, representation and function

EN ENENO
ENO

Decrementing, incrementing

IN/OUT IN/OUT

Function:

DEC
INC

Decrement
Increment

Data type:

SINT, INT, DINT, USINT, UINT, UDINT

DeclarationName

EN
ENO

IN/OUT

–
–

INOUT

BOOL
BOOL

Datentyp

DescriptionData type

SCL Variable Variable:= + 1; //Incrementing
Variable Variable:= - 1; //Decrementing

LAD FBDFunction
Data type

Function
Data type Enabling input

Enabling output

Digital tag

11 Digital functions

370

occurs during calculation, the enable output ENO is set to “0”, otherwise to “1”. If
the execution of the function is not enabled (EN = “0”), the calculation does not take
place and ENO is also “0”. Zero is then output at the OUT parameter (Fig. 11.12).

Fig. 11.12 Arithmetic functions for time values, representation and function

Function:

Addition

TIME + TIME = TIME
DTL + TIME = DTL
TOD + TIME = TOD

Subtraction

TIME – TIME = TIME
DTL TIME = DTL
TOD – TIME = TOD

T_ADD

T_SUB

–

Difference

DTL – DTL = TIME / INT
TOD – TOD = TIME / INT
DATE – DATE = TIME / INT

Combination

DATE + TOD = DTL

T_DIFF

T_COMBINE

Data type:

EN

EN

EN

EN

EN

EN

EN

EN

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

Arithmetic functions for date and duration

LAD

FBD

IN1

IN1

IN1

IN1

IN1

IN1

IN1

IN1

IN2

IN2

IN2

IN2

IN2

IN2

IN2

IN2

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

BeschreibungData type

T_ADD
Data type PLUS Time

T_ADD
Data type PLUS Time

T_DIFF
Data type Data typeTO

T_DIFF
Data type Data typeTO

T_SUB
Data type MINUS Time

T_SUB
Datentyp MINUS Time

T_COMBINE
Time_Of_Day TO DTL

T_COMBINE
Time_Of_Day TO DTL

SCL
OUT := T_ADD(IN1 := ... , IN2 := ...);
OUT := T_SUB(IN1 := ... , IN2 := ...);
OUT := T_DIFF(IN1 := ..., IN2 := ...);
OUT := T_COMBINE(IN1 := ... , IN2 := ...);

Enabling input

Enabling output

Time tag

Time tag

Result

The data type depends upon the
executed function. The data types at
the IN1, IN2 and OUT parameters are
correspondingly different.

11.4 Arithmetic functions for time values

371

The following errors can occur with an arithmetic function for time values:

b Invalid bit assignment for DTL

b Violation of permissible range of values for TIME or DTL

11.4.2 Addition T_ADD

The T_ADD function adds the values at the IN1 and IN2 parameters and applies the
result to the OUT parameter. The parameters have different data types depending
on the calculation:

b Addition of two durations TIME + TIME = TIME

b Addition of a duration to a point in time DTL + TIME = DTL

b Addition of a duration to the time of day TOD + TIME = TOD

T_ADD sets ENO to “0” when the permissible range of values is violated. The result
is limited to the permissible range.

11.4.3 Subtraction T_SUB

The T_SUB function subtracts the value at the IN2 parameter from the value at the
IN1 parameter and applies the result to the OUT parameter. The parameters have
different data types depending on the calculation:

b Subtraction of two durations TIME – TIME = TIME

b Subtraction of a duration from a point in time DTL – TIME = DTL

b Subtraction of a duration from a time of day TOD – TIME = TOD

T_SUB sets ENO to “0” when the permissible range of values is violated. The result
is limited to the permissible range.

11.4.4 Difference T_DIFF

The function T_DIFF subtracts the value at the IN2 parameter from the value at IN1
parameter and stores the result at the OUT parameter. The difference between two
points in time (DTL, TOD, or DATE) is formed. The result is available in the data type
TIME or INT.

T_DIFF sets ENO to “0” when the permissible range of values is violated. The result
is limited to the permissible range.

11.4.5 Combine T_COMBINE

The T_COMBINE function summarizes tags together with data types DATE and
TIME_OF_DAY (TOD), converts the data type to DATE_AND_TIME (DTL), and returns
the value at the OUT parameter.

The statement does not report any errors.

11 Digital functions

372

11.5 Mathematical functions

11.5.1 Introduction

The following mathematical functions are available:

b Trigonometric functions: sine (SIN), cosine (COS), tangent (TAN)

b Arc functions: arc sine (ASIN), arc cosine (ACOS), arc tangent (ATAN)

b Generation of square (SQR) and square root (SQRT)

b Exponential function to base e (EXP) and to any base (EXPT)

b Napierian logarithm (LN)

b Extract decimal places (FRAC)

All mathematical functions process floating-point numbers.

Fig. 11.13 Mathematical functions, representation and function

EXPT
DT1 DT2**

EXPT
DT1 DT2**

EN

EN

EN

EN

OUT

OUT

OUTENO

ENO

ENO

OUT

ENO

Mathematical functions

Exponentiate to any base EXPT

LAD FBD

IN

IN1

IN2

IN

IN1

IN2

Function: SIN
COS
TAN

Sine
Cosine
Tangent

ASIN
ACOS
ATAN

SQR EXP
SQRT LN

FRAC

Arc sine
Arc cosine
Arc tangent

Formation of square Exponential function to base e
Extraction of square root Natural logarithm

Decimal places

Data type 1: REAL, LREAL

Data type 2: USINT, UINT, UDINT, SINT, INT, DINT,
REAL, LREAL

Declaration

Declaration

Name

Name

EN

EN

ENO

ENO

IN

IN1

OUT

IN2

OUT

–

–

–

–

INPUT

INPUT

OUTPUT

INPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

REAL, LREAL

Data type 1

REAL, LREAL

Data type 2

Data type 1

Description

Description

Data type

Data type

Function: EXPT Exponential function
to any base

SCL

SCL

OUT := (IN);Function

OUT := IN1 IN2;**

Enabling input

Enabling output

Digital tag

Result

Enabling input

Enabling output

Base

Exponent

Result

Function
Data type

Function
Data type

LAD FBD

11.5 Mathematical functions

373

A mathematical function is executed if the enabling input EN is unused or if “1” is
present at the enabling input (“current” flows into the enabling input). If an error
occurs during the calculation, the enabling output ENO is set to “0”, otherwise to
“1”. The calculation is not carried out if it has not been enabled (EN = “0”), and ENO
is also “0”.

11.5.2 Trigonometric functions SIN, COS, TAN

The trigonometric functions generate the sine (SIN), cosine (COS) or tangent (TAN)
of the tag at the IN parameter and output it at the OUT parameter. An angle speci-
fied in radians as a floating-point number is expected at the IN parameter.

Two units are common for the magnitude of an angle: degrees from 0° to 360° and
radians from 0 to 2 (where = +3.141593e+00). Either can be converted propor-
tionally. For example, the radian measure for a 90° angle is /2, i.e. +1.570796e+00.
With values greater than 2 (+6.283185e+00), 2 or a multiple thereof is subtracted
from this until the input value for the trigonometric function is less than 2.

The enabling output ENO is set to signal state “0” when an invalid floating-point
number, + or – is present at the IN parameter. The value of IN is then output at
the OUT parameter.

11.5.3 Arc functions ASIN, ACOS, ATAN

The arc functions generate the arc sine (ASIN), arc cosine (ACOS) or arc tangent (ATAN)
of the tags the IN parameter and output the result at the OUT parameter. They are the
inverted functions of the respective trigonometric function. They expect a floating-
point number within a certain range at the IN input, and return an angle in radians
(Table 11.2).

The signal state “0” is set at the enabling output ENO if the value at the IN parame-
ter is not in the range 1 (with ASIN or ACOS) or if an invalid floating-point number
is present at the IN parameter. An invalid floating-point number is then output at
the OUT parameter.

Table 11.2 Range of arc functions

Function Permissible range Returned value

Arc sine ASIN –1 to +1 –/2 to +/2

Arc cosine ACOS –1 to +1 0 to

Arc tangent ATAN Complete range –/2 to +/2

11 Digital functions

374

11.5.4 Formation of square SQR

The SQR function forms the square of the value present at the IN input and applies
the result to the OUT output.

The enabling output ENO is set to signal state “0” if the value at the IN parameter
or the result of the calculation is an invalid floating-point number. In the first case,
an invalid floating-point number is output at the OUT parameter, and in the second
case +.

11.5.5 Extraction of square root SQRT

The SQRT function extracts the square root of the value present at the IN input and
applies the result to the OUT output.

If a value less than zero is present at the IN input, SQRT returns an invalid floating-
point number. If the value at the IN input is an invalid floating-point number or ±,
the invalid floating-point number or ± is output at OUT. The enabling output ENO
is set to signal state “0” in both cases.

11.5.6 Exponentiate to base e EXP

The EXP function calculates the power from base e (= 2.718282e+00) and the value
present at the IN input, and applies the result to the OUT output.

The enabling output ENO is set to signal state “0” if the value at the IN parameter
or the result of the calculation is an invalid floating-point number. In the first case,
an invalid floating-point number is output at the OUT parameter, and in the second
case +.

11.5.7 Calculation of Napierian logarithm LN

The LN function calculates the Napierian logarithm to base e (= 2.718282e+00) of
the number present at the IN input and applies the result to the OUT output.

The enabling output ENO is set to signal state “0” if:

b The value at the IN1 parameter is zero, negative, – or a negative, invalid float-
ing-point number. – is then output at the OUT parameter.

b The value at the IN1 parameter is + or a positive, invalid floating-point number.
The value of IN1 is then output at the OUT parameter.

The Napierian logarithm is the inverted function of the exponential function:
If y = ex, then x = ln y.

OUT IN 2=

OUT IN=

OUT eIN=

OUT IN ln=

11.5 Mathematical functions

375

If you wish to calculate a logarithm, use the equation

where b or n is any base. If n = e is set, it is possible to use the Napierian logarithm
to calculate a logarithm to any base:

In the special case for base 10, the equation is:

lg a = = 0.4342945 · ln a

11.5.8 Extracting decimal places FRAC

The FRAC function extracts the decimal places from the number at the IN parameter
and outputs the result at the OUT parameter.

The enabling output ENO is set to signal state “0” when the value at the IN param-
eter is an invalid floating-point number or ±. A positive, invalid floating-point
number is then output at the OUT parameter.

11.5.9 Exponentiation to any base EXPT

The EXPT function calculates the power from the base at parameter IN1 and the
exponent at parameter IN2 and stores the result at parameter OUT.

The enable output ENO or the tag ENO is set to signal state “0”

b if the value at parameter IN1 is + and at parameter IN2 is not –. Then + is out-
put at the OUT parameter.

b if the value at parameter IN1 is – or negative. Then an invalid floating-point
number is output at the OUT parameter (if IN2 is a floating-point number), oth-
erwise –.

b if the value at parameter IN1 or IN2 is an invalid floating-point number. Then an
invalid floating-point number is output at OUT.

b if the value at parameter IN1 is 0 (zero) and there is a floating-point number at
parameter IN2. Then an invalid floating-point number is output at OUT.

balog nalog
nblog

-------------=

balog aln
bln

--------=

aln
10ln

OUT FRAC IN =

OUT IN 1IN 2=

11 Digital functions

376

11.6 Conversion functions (Conversion of data type)

11.6.1 Introduction

If you link tags together, they must have the same data type. This also applies if you
assign values or supply function or block parameters. If a tag is not available in the
required data type, the data type must be converted. The “simple” conversion func-
tions are available for this.

With the “extended” conversion functions, for example, a number available in
STRING format can be converted into a number format or a character sequence into
a number sequence. The “extended” conversion functions are usually based on a
system or standard block.

The following conversion functions are available:

b CONV
Conversion of bit sequences (BYTE, WORD, DWORD) and numerical types
(SINT, INT, DINT, USINT, UINT, UDINT, REAL, LREAL) among themselves,
conversion of INT to BCD16 and vice versa, conversion of DINT to BCD32 and
vice versa

b ROUND, FLOOR, CEIL, TRUNC
Conversion of floating-point numbers (REAL, LREAL) into floating-point and
fixed-point numbers (SINT, INT, DINT, USINT, UINT, UDINT, REAL, LREAL)

b SCALE_X, NORM_X
Conversion (scaling) of floating-point numbers (REAL) to floating-point
and fixed-point numbers (SINT, INT, DINT, USINT, UINT, UDINT, REAL) and
conversion (standardization) of floating-point and fixed-point numbers
(SINT, INT, DINT, USINT, UINT, UDINT, REAL) to floating-point numbers (REAL)

b T_CONV
Conversion of a duration (TIME) into a fixed-point number (DINT) and
vice versa

b S_CONV
Conversion of floating-point and fixed-point numbers (SINT, INT, DINT,
USINT, UINT, UDINT, REAL) into a string (STRING) and vice versa and
copying of a string (STRING)

b STRG_VAL, VAL_STRG
Conversion of floating-point and fixed-point numbers (SINT, INT, DINT,
USINT, UINT, UDINT, REAL) into a string (STRING) and vice versa with
specification of notation

b Strg_TO_Chars, Chars_TO_Strg
Conversion of a string (STRING) to a character array (ARRAY OF CHAR)
and vice versa

b ATH, HTA
Conversion of a character sequence in ASCII format into a number sequence
in hexadecimal format, and vice versa

11.6 Conversion functions (Conversion of data type)

377

Execution of a conversion function

LAD and FBD: The conversion function is executed if the signal state “1” is present
at enable input EN (if “current” is flowing into the enable input) or if the enable
input remains unconnected. If an error occurs during conversion, the enable out-
put ENO is set to “0”, otherwise to “1”. If the execution of the function is not enabled
(EN = “0”), the conversion does not take place and ENO is also “0”.

SCL: If an error occurs when processing a conversion function, the tag ENO is reset
to signal state “0”.

These conversion functions are “explicit” conversion functions, where the bit
assignments of the tags change or where conversion errors can occur, for example
a conversion from DINT to REAL. These conversions must be programmed.
“Implicit” conversion functions also exist which convert a data type without chang-
ing the bit assignments and do not signal an error, for example the conversion from
BYTE to WORD. These conversions are carried out “automatically”. Further details
can be found in Chapter 4.3.2 “Implicit data type conversion” on page 93.

11.6.2 Conversion function CONV

Conversion function CONV for fixed-point numbers and bit sequences

The conversion function CONV converts the data type of the tags at parameter IN to
another and outputs the result at the OUT parameter.

When setting BYTE, WORD or DWORD, a constant (at the IN parameter) or a tag with
elementary data type can be specified which has the set data width (8, 16 or 32 bits).

The numerical value of the tag at the IN parameter is transferred right-justified to the
tag at the OUT parameter. If “vacant” digits result because the data types have differ-
ent lengths, they are padded with the sign. If the permissible numerical range at the
OUT parameter is exceeded during the conversion, ENO is set to signal state “0”.

Conversion function CONV for BCD numbers

The conversion function CONV converts a fixed-point number at the IN parameter
into a BCD number and vice versa. The result is available at the OUT parameter.

Conversion of INT to BCD16 or of DINT to BCD32

The value at parameter IN is converted to a BCD-coded number with three (BCD16)
or seven (BCD32) decades at parameter OUT. The right-justified decades represent
the absolute value of the decimal number. The sign is located in the bits 12 to 15
(BCD16) or 28 to 31 (BCD32). If bit 15 or 31 is set to signal state “0”, the sign is pos-
itive; bit 15 or bit 31 set to signal state “1” indicates a negative sign. If the number
is too large for a conversion into a BCD number, the conversion function sets ENO
to “0”. The conversion is not carried out in this case.

11 Digital functions

378

Conversion of BCD16 to INT or of BCD32 to DINT

The value at the IN parameter is converted into a fixed-point number at the OUT pa-
rameter. If the number is too large for conversion to a fixed-point number with the
corresponding data type, the conversion function sets ENO to “0”. The conversion
is not carried out in this case.

11.6.3 Conversion functions for floating-point numbers

The conversion function CONV converts fixed-point numbers into floating-point
numbers and vice versa. For conversion from floating-point numbers into fixed-
point numbers, there are additional features that differ in rounding behavior
(Table 11.3). If an error occurs during conversion, no conversion takes place.

Fig. 11.14 Conversion function CONV, representation and function

CONV
DT1 to DT2

EN EN

OUT

OUTENO

ENO

Conversion function CONV

LAD FBD

IN IN

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 2

DescriptionData typeCONV
DT1 to DT2

Function:

The following data type combinations are possible:

Data type conversion for from Data type DT1 to Data type DT2

BYTE, WORD, DWORD,
BYTE, WORD, DWORD USINT, UINT, UDINT,

SINT, INT, DINT

USINT, UINT, UDINT,
USINT, UINT, UDINT, SINT, INT, DINT,
SINT, INT, DINT BYTE, WORD, DWORD,

REAL, LREAL

INT BCD16
DINT BCD32
BCD16 INT
BCD32 DINT

USINT, UINT, UDINT,
REAL, LREAL SINT, INT, DINT,

REAL, LREAL

SCL OUT := (IN);DT1_TO_DT2

Bit sequences

Fixed-point numbers

BCD numbers

Floating-point numbers

Enabling input

Enabling output

Input tag

Output tag

The conversion function CONV is used to convert data types. The content of the tag with
data type DT1 at the IN parameter is converted and transferred to the tag with data type DT2
at the OUT parameter.

11.6 Conversion functions (Conversion of data type)

379

Conversion of fixed-point numbers into floating-point numbers
with the CONV function

The conversion function CONV converts a fixed-point number (SINT, INT, DINT,
US-INT, UINT, UDINT) at the IN parameter into a floating-point number (REAL,
LREAL) and outputs the result at the OUT parameter. If the accuracy suffers during
the conversion of DINT or UDINT into REAL, ENO is set to “0”.

Conversion of floating-point numbers into fixed-point numbers
with the CONV function

The conversion function CONV converts a floating-point number at the IN parame-
ter (REAL, LREAL) into a fixed-point number (SINT, INT, DINT, USINT, UDINT) and
outputs the result at the OUT parameter. During conversion figures are rounded to
the next integer. ENO is set to “0” if during conversion the allowed number range is
exceeded or an invalid floating-point number is specified.

Conversion of REAL into LREAL and vice versa with the CONV function

The conversion function CONV converts a floating-point number at the IN parame-
ter into a floating-point number with a different data type (REAL to LREAL or LREAL
to REAL) and outputs the result at the OUT parameter. ENO is set to “0” if the per-
missible numerical range is violated during the conversion or if an invalid floating-
point number is specified.

Conversion of REAL into fixed-point number with the CEIL function

The conversion function CEIL converts the data type REAL or LREAL of the tag at
the IN parameter into a fixed-point data type, and outputs the result at the OUT pa-
rameter. During the conversion, CEIL rounds-off to the next largest integer. ENO is
set to “0” if the permissible numerical range is violated during the conversion or if
an invalid floating-point number is specified.

Table 11.3 Conversion of floating-point numbers

Function Conversion

CONV Conversion from USINT, UINT, UDINT, SINT, INT or DINT to REAL or LREAL

Conversion from REAL or LREAL to USINT, UINT, UDINT, SINT, INT or DINT

CONV With rounding to the next integer (as ROUND)

CEIL With rounding to the next higher integer

FLOOR With rounding to the next smaller integer

ROUND With rounding to the next integer

TRUNC Without rounding

11 Digital functions

380

Conversion of REAL into fixed-point number with the FLOOR function

The conversion function FLOOR converts the data type REAL or LREAL of the tag at
the IN parameter into a fixed-point data type, and outputs the result at the OUT pa-
rameter. During the conversion, FLOOR rounds-off to the next smallest integer.
ENO is set to “0” if the permissible numerical range is violated during the conver-
sion or if an invalid floating-point number is specified.

Conversion of REAL into fixed-point number with the ROUND function

The conversion function ROUND converts the data types REAL and LREAL of the tags
at parameter IN to a fixed-point data type and outputs the result at parameter OUT.
During conversion, ROUND rounds to the nearest integer. If the result is exactly
between even and odd numbers, the even number is selected: ROUND(0.5) = 0,
ROUND(1.5) = 2. ENO is set to “0” if during conversion the allowed number range is
exceeded or an invalid floating-point number is specified.

Conversion of REAL into fixed-point number with the TRUNC function

The conversion function TRUNC converts the data type REAL or LREAL of the tag at
the IN parameter into a fixed-point data type, and outputs the result at the OUT pa-
rameter. TRUNC returns the whole number part of the number to be converted;
the fractional part (the decimal places) is “truncated”. ENO is set to “0” if the per-
missible numerical range is violated during the conversion or if an invalid floating-
point number is specified.

Fig. 11.15 Conversion functions for floating-point numbers, representation and function

DT1 DT2to

EN EN

OUT

OUTENO

ENO

Conversion functions with rounding-off for floating-point numbers

IN IN

Function:

ROUND
CEIL
FLOOR
TRUNC

Data type 1 (DT1): REAL, LREAL
USINT, UINT, UDINT, SINT, INT, DINT, REAL, LREAL

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 2

Enabling input

Enabling output

DescriptionData type
DT1 DT2to

SCL
OUT := (IN);Function_DT2

Input tag

Output tag

FunctionLAD FBD Function

The ROUND, CEIL, FLOOR and TRUNC functions convert a floating-point number at the IN para-
meter into a number at the OUT parameter, taking into account three types of rounding-off:

Conversion without rounding-off

Conversion with rounding-off to the next integer
Conversion with rounding-off to the next largest integer
Conversion with rounding-off to the next smallest integer

Data type 2 (DT2):

11.6 Conversion functions (Conversion of data type)

381

Overview of rounding-off when converting floating-point into fixed-point

Table 11.4 shows the different effects of rounding when converting floating point
to fixed point using the example of the REAL data type in the range between -1 and
+1.

11.6.4 Conversion functions SCALE_X and NORM_X

Scaling SCALE_X

The function SCALE_X maps the floating-point number at the VALUE parameter in
the value range of 0.0 to 1.0 to a range of values defined by the range limits at the
parameters MIN and MAX. The result is output at the OUT parameter (Fig. 11.16).

Please note: The value applied at the VALUE parameter must be within the limits
of 0 and 1 (inclusive)! If this is not the case, the value at the OUT parameter may be
smaller than MIN or greater than MAX. If it is still within the range permissible for
this data type, SCALE_X does not signal an error (ENO = “1”).

The function SCALE_X reports an error (ENO = “0”) if there is an invalid floating-
point number at the VALUE parameter (VALUE is then written to the OUT parame-
ter), if the result is outside the range of validity of the data type at the OUT param-

Table 11.4 Types of rounding for converting REAL numbers

Input value Result as fixed-point number

REAL 16# ROUND CEIL FLOOR TRUNC

1.0000001 3F80 0001 1 2 1 1

1.0 3F80 0000 1 1 1 1

0.99999995 3F7F FFFF 1 1 0 0

0.50000005 3F00 0001 1 1 0 0

0.5 3F00 0000 0 1 0 0

0.49999996 3EFF FFFF 0 1 0 0

5.877476E–39 0080 0000 0 1 0 0

0.0 0000 0000 0 0 0 0

–5.877476E–39 8080 0000 0 0 –1 0

–0.49999996 BEFF FFFF 0 0 –1 0

–0.5 BF00 0000 0 0 –1 0

–0.50000005 BF00 0001 –1 0 –1 0

–0.99999995 BF7F FFFF –1 0 –1 0

–1.0 BF80 0000 –1 –1 –1 –1

–1.0000001 BF80 0001 –1 –1 –2 –1

11 Digital functions

382

eter and the value at the MAX parameter is less than or equal to that at the MIN
parameter (in both cases, OUT is assigned without definition).

Normalizing NORM_X

The NORM_X function normalizes the number at the VALUE parameter to the
range 0 to 1, based on a value range specified with the MIN and MAX parameters,
and returns it as a REAL number at the OUT parameter (Fig. 11.16).

Please note: The value applied at the VALUE parameter must be within the limits of
MIN and MAX (inclusive)! If this is not the case, the value at the OUT parameter may

Fig. 11.16 SCALE_X and NORM_X functions, representation and function

SCALE_X
REAL to DT

SCALE_X
REAL to DT

EN

VALUE

EN

VALUE

OUT

OUT

ENO

ENO

Scaling SCALE_X

LAD FBD

MIN

MAX

MIN

MAX

Data type:

USINT, UINT, UDINT,
SINT, INT, DINT,
REAL, LREAL

DeclarationName

EN

ENO

MIN

VALUE

MAX

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

REAL, LREAL

Data type

Data type

DescriptionData type

OUT := VALUE (MAX – MIN) + MIN
0 VALUE 1

Function:

NORM_X
to REALDT

NORM_X
to REALDT

EN

VALUE

EN

VALUE

OUT

OUT

ENO

ENO

Standardization NORM_X

LAD FBD

MIN

MAX

MIN

MAX

DeclarationName

EN

ENO

MIN

VALUE

MAX

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

REAL, LREAL

DescriptionData type

Data type:

USINT, UINT, UDINT,
SINT, INT, DINT,
REAL, LREAL

Function:

OUT := (VALUE – MIN) / (MAX MIN)–
0 OUT 1

SCL

SCL

OUT := (MIN := ... , VALUE := ... , MAX := ...);SCALE_X_Data type

OUT := (MIN := ... , VALUE := ... , MAX := ...);NORM_X_Data type

Enabling input

Enabling output

Lower limit

Input tag

Upper limit

Result

The value of the tag at the VALUE parameter is converted linearly
between the MIN and MAX limits, and output at the OUT parameter.

Enabling input

Enabling output

Lower limit

Input tag

Upper limit

Result

The value of the tag at the VALUE parameter is converted linearly
between the MIN and MAX limits, and output at the OUT parameter.

11.6 Conversion functions (Conversion of data type)

383

be smaller than 0 or greater than 1. NORM_X does not signal an error in this case
(ENO = “1”).

The NORM_X function signals an error (ENO = “0”) if an invalid floating-point num-
ber is present at the VALUE parameter (VALUE is then written to the OUT parame-
ter), if the result is outside the valid range of the OUT data type, and if the value at
the MAX parameter is less than or equal to that at the MIN parameter (in both cases,
OUT is undefined).

11.6.5 Conversion function T_CONV

The conversion function T_CONV converts the data type of the tag at parameter IN
(from TIME to DINT or DINT to TIME) and returns the result at the OUT parameter
(Fig. 11.17). T_CONV does not signal errors.

11.6.6 Conversion function S_CONV

The conversion function S_CONV converts a string (STRING) at parameter IN to a
number, or a number at parameter IN to a string. The result is output at the OUT
parameter. S_CONV can also be used to copy a string (Fig. 11.18).

Conversion of a string into a number

The conversion starts with the first character of the string and ends at the end of the
string or at the first character which is not a digit, sign or point.

An error occurs if the structure of the string is invalid with regard to the data type
conversion, or if the numerical range of the data type specified at the OUT param-
eter is exceeded. ENO is then set to “0”, and the OUT parameter is zero.

Fig. 11.17 Conversion function T_CONV, representation and function

T_CONV
DT1 to DT2

T_CONV
DT1 to DT2

EN EN

OUT

OUTENO

ENO

Conversion function T_CONV

LAD FBD

IN IN

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 2

DescriptionData type

Function: Conversion
of Data type 1 to Data type 2

TIME DINT
DINT TIME

SCL
OUT := TIME_TO_DINT(IN);
OUT := DINT_TO_TIME(IN);

Enabling input

Enabling output

Input tag

Result

The T_CONV function converts the data type of the tag
at the IN parameter and outputs the result at the OUT
parameter.

11 Digital functions

384

The first character of the string may be a sign (+, –), digit (0 to 9) or space. Leading
spaces are ignored. Floating-point numbers with exponential notation are not al-
lowed (“e” or “E” is not recognized as exponent identifiers). A decimal point is used
as the separator for specifying fractional numbers, and the comma as the separator
for thousands is permissible left of the decimal point and is ignored.

Conversion of a number into a string

The output parameter must be supplied with a valid string (plausible length data
and characters). The conversion function writes the string starting at the first char-
acter (third byte) and tracks the actual length in the second byte. The maximum
length entered in the first byte is not changed.

The maximum length must be sufficiently large such that the converted number
fits into the string. The minus sign must be considered in the case of signed
numbers, and also the decimal point in the case of data type REAL (maximum
length >= number of digits + sign + decimal point). In the event of an error, ENO is
set to “0”, and the OUT parameter is zero.

If a REAL number is present at the IN parameter which represents – or +, the
characters 'Inf' (Infinity) are output, or the characters 'NaN' (Not a Number) in the
case of an invalid floating-point number.

Following the conversion, the first character in the string is a digit or, with negative
numbers, the sign (–). A decimal point is used as the separator with a REAL number
as the input (no exponential representation in the string).

Fig. 11.18 Conversion function S_CONV

S_CONV
DT1 DT2to

S_CONV
DT1 DT2to

EN EN

OUT

OUTENO

ENO

Conversion function S_CONV

LAD FBD

IN IN

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 2

Enabling input

Enabling output

Digital tag

Result

DescriptionData type

Function:
The S_CONV function converts a tag with data type STRING into a tag with a fixed-point or
floating-point data type. S_CONV can also copy a STRING tag.
OUT := S_CONV(IN)

Conversion of Data type 1: to Data type 2:

STRING USINT, UINT, UDINT, SINT, INT, DINT, REAL
USINT, UINT, UDINT, SINT, INT, DINT, REAL STRING
STRING STRING (copy)

SCL
OUT := Data type 1 _TO_ Date type 2(IN);

11.6 Conversion functions (Conversion of data type)

385

Copying a string

A string at the IN parameter is copied to the OUT parameter if a tag with the data
type STRING is connected to it. If the actual length of the string at the IN parameter
is greater than the maximum length of the string at the OUT parameter, copying is
up to the maximum length of the tag at the OUT parameter, and ENO is set to “0”.

11.6.7 Conversion functions STRG_VAL and VAL_STRG

Conversion of a string into a number (STRG_VAL)

The string to be converted is at the IN parameter. The first character to be converted
is specified at the parameter P, the format to be converted at the parameter FOR-
MAT. The conversion stops when the end of the string is reached or at the first char-
acter that is not a digit (0 to 9), a sign (+, -), a point, a comma, or an “e” or “E”. After
successful conversion, the position of the last converted character is in P and the
result is in OUT. OUT must be filled in with a valid string prior to conversion (Fig.
11.19).

The first character to be converted must be a digit, a sign or a space. Leading spaces
are ignored. If a decimal point is used as the separator (bit 0 in FORMAT is “0”), a
comma as the separator for thousands is permissible left of the decimal point and
is ignored. If a decimal comma is used as the separator (German notation) a point
as the separator for thousands is permissible and is ignored.

In the event of an error, zero is output at the OUT parameter, and ENO is set to “0”.

Fig. 11.19 Conversion function STRG_VAL

STRG_VAL
String to DT

STRG_VAL
String to DT

EN

FORMAT

EN

FORMAT

OUT

OUT

ENO

ENO

LAD FBD

IN

P

IN

P

Conversion function STRG_VAL

DeclarationName

EN

IN

ENO

P

FORMAT

OUT

–

INPUT

–

IN_OUT

INPUT

OUTPUT

BOOL

STRING

BOOL

USINT, UINT

BYTE, WORD

Data type

Enabling input

String

Enabling output

Character position

Format specificat.

Result

DescriptionData type

Structure of the FORMAT parameter

Function:

The STRING tag at the IN parameter is converted into a numerical value and output at the OUT
parameter. The conversion format is defined by the FORMAT parameter.

USINT, UINT, UDINT, SINT, INT, DINT, REAL, LREAL

D = decimal
separator

“0” = point
“1” = comma

N = notation “0” = decimal fraction
“1” = exponential0

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

N

1

D

0

SCL
STRG_VAL(IN := ... , FORMAT := ... , P := ... , OUT => ...);

Data type:

http://pnap.ir/siemens-s71200-price-list/

11 Digital functions

386

Fig. 11.20 Conversion function VAL_STRG

VAL_STRG
DT to String

VAL_STRG
DT to String

EN

SIZE

FORMAT

EN

SIZE

FORMAT

OUT

OUT

ENO

ENO

Conversion function VAL_STRG

LAD FBD

IN

PREC

P

IN

PREC

P

DeclarationName

EN

IN

ENO

SIZE

PREC

P

FORMAT

OUT

–

INPUT

–

INPUT

INPUT

IN_OUT

INPUT

OUTPUT

BOOL

Datentyp

BOOL

USINT

USINT

USINT, UINT

BYTE, WORD

STRING

DescriptionData type

Structure of the FORMAT parameter

Function:

The numerical value at the IN parameter is converted into a STRING tag and output at the OUT
parameter. The conversion format is defined by the FORMAT parameter.

Data type:

USINT, UINT, UDINT, SINT, INT, DINT,
REAL, LREAL

0

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

V

2

N

1

D

0

Output format for exponential representation (FORMAT bit 1 = “1”)

Output format for decimal fraction representation (FORMAT bit 1 = “0”)

SCL
STRG_VAL(IN := ... ,

SIZE := ... ,
PREC := ... ,
FORMAT := ... ,
P := ... ,
OUT => ...);

D = decimal
separator

“0” = point
“1” = comma

N = notation “0” = decimal fraction
“1” = exponential

S = sign “0” = with “+” and “–”
“1” = only with “–”

Enabling input

Numerical value

Enabling output

Number of characters

Decimal places

Character position

Format specifications

Result

E SS DSpaces
Digits before
decimal point Decimal places Exponent

Parameter SIZE

Parameter P

Parameter PREC

S DSpaces Digits before
decimal point Decimal places

Parameter SIZE

Parameter P

Parameter PREC

S = sign
(FORMAT bit 2)

D = decimal separator
(FORMAT bit 0)

E = exponential
symbol “E”

S = sign
(FORMAT bit 2)

D = decimal separator
(FORMAT bit 0)

http://pnap.ir/siemens-s71200-price-list/

11.6 Conversion functions (Conversion of data type)

387

Conversion of a number into a string (VAL_STRG)

The conversion function VAL_STRG converts a numerical value at the IN parameter
into a string and outputs it at the OUT parameter. OUT must be occupied by a valid
STRING tag which is long enough to accommodate the converted value (Fig. 11.20).

The first converted character is written into the STRING tag at the position specified
at the P parameter. If P is greater than the current length of the string, spaces are
appended up to the P position. Following the conversion, the position of the next
character in the string which has not yet been replaced is present in P.

The SIZE parameter specifies the number of digits in front of the decimal point.
Leading spaces are inserted if the converted value occupies fewer digits.

The PREC parameter specifies the decimal places, even with a whole number. Exam-
ple: The number 123 is converted on PREC = 1 into the string “12.3”. The maximum
value for PREC is 7. If PREC = 0, the decimal separator and the decimal places can be
omitted.

The floating point notation places an “E” before the exponent, followed by the sign
of the exponent and the exponent without leading zeros. The digits before the “E”
are assigned as in fixed-point notation.

If an error occurs during processing of the conversion function, ENO is set to “0”.
The OUT parameter then contains a value with leading spaces and with a “C” as the
last character.

11.6.8 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG

The function STRG_TO_CHARS converts a string with data type STRING into an
array with data type ARRAY OF CHAR or ARRAY OF BYTE. The function
CHARS_TO_STRG converts an array with data type ARRAY OF CHAR or ARRAY OF
BYTE into a string with data type STRING. In LAD and FBD, the conversion func-
tions are displayed as EN/ENO boxes (Fig. 11.21).

STRG_TO_CHARS converts the string at the parameter STRG with data type STRING
into a character sequence. The character sequence is inserted into the array at the
parameter CHARS. The array comprises components with data type CHAR or BYTE.
The position where the character sequence is inserted is specified by the parameter
PCHARS. The parameter CNT indicates the number of inserted characters.

CHARS_TO_STRG converts a character sequence into a string with data type STRING
and outputs it at the parameter STRG. The character sequence is taken from the
array at the parameter CHARS. The parameter PCHARS specifies the position of the
first character, while parameter CNT specifies the number of removed characters. If
the value is zero at parameter CNT, all characters are copied. The array has the data
type ARRAY OF CHAR or ARRAY OF BYTE. Only characters with ASCII coding are
accepted.

If an error occurs during conversion (e.g. if the target area is too small to accept the
copied characters), ENO is reset to signal state “0”.

11 Digital functions

388

Fig. 11.21 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG

Conversion function STRG_TO_CHAR

Strg_TO_Chars Strg_TO_Chars

Chars_TO_Strg Chars_TO_Strg

EN EN

EN EN

pChars pChars

pChars pChars

Chars Chars

Cnt Cnt

Cnt

ENO

Strg

ENO

ENO

Cnt

ENO

Strg

LAD

LAD

FBD

FBD

Strg Strg

Chars Chars

Declaration

Declaration

Name

Name

EN

EN

Strg

Chars

ENO

ENO

pChars

pChars

Chars

Cnt

Cnt

Strg

–

–

INPUT

INPUT

–

–

INPUT

INPUT

INOUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

DINT

DINT

STRING

VARIANT

VARIANT

UINT

UINT

STRING

Enabling input

Enabling input

String

Character array

Enabling output

Enabling output

Position

Position

Character array

Number

Number

String

Description

Description

Data type

Data type

Function:

Function:

SCL

SCL

Strg_TO_Chars(Strg := ... , pChars := ... , Cnt => ... , Chars := ...);

Chars_TO_Strg(Chars := ... , pChars := ... , Cnt := ... , Strg => ...);

current length

maximum length

Parameter pChars

Parameter pChars

Cnt

Cnt

Parameter Strg

Parameter Strg

Parameter Chars

Parameter Chars

The string at the STRG parameter is inserted
from the position PCHARS in the character
array at the CHARS parameter with the data
type ARRAY OF CHAR or ARRAY OF BYTE.
The CNT parameter indicates the number of
inserted characters.

From the character array at the parameter
CHARS with the data type ARRAY OF CHAR or
ARRAY OF BYTE, CNT characters after the
position PCHARS are taken, converted to
a string, and output at the STRG parameter.

Conversion function CHARS_TO_STRG

Valid characters:

all characters with ASCII coding

current length

maximum length

http://pnap.ir/siemens-s71200-price-list/

11.7 Shift functions

389

11.6.9 Conversion functions ATH and HTA

The ATH function converts a sequence of ASCII-coded characters into a sequence of
hexadecimal numbers. The HTA function converts a sequence of hexadecimal num-
bers into a sequence of ASCII-coded characters. The conversion functions are rep-
resented as EN/ENO boxes in the case of LAD and FBD and as function calls with the
conversion result as the function value in the case of SCL (Fig. 11.22).

Area pointers in the form of P#Data_block.Data_operand or P#Operand that point to
the first byte of the input or output data area are expected at the IN and OUT param-
eters. Example: P#DB10.DBX12.0. The N parameter with data type INT specifies the
number of characters to be converted.

ATH converts a character sequence present in ASCII code into a sequence in hexa-
decimal code. Only the digits 0 to 9 and the uppercase letters A to F are permissible.
An illegal character is converted to zeros. In the event of error at parameter
RET_VAL, an error message is output and ENO is reset to signal state “0”.

HTA converts a character sequence present in hexadecimal code into an ASCII-
coded character sequence. HTA does not report any errors.

11.7 Shift functions

11.7.1 Introduction

A shift function moves the contents of the tags at parameter IN by as many digits as
parameter N specifies. The result is output at the OUT parameter (Fig. 11.23).

The shift function is executed if “1” is present at the enabling input (“current” flows
into the EN input) or if EN is unused. ENO is then “1”. The shift is not carried out if
it has not been enabled (EN = “0”), and ENO is also “0”. A shift function does not re-
port any errors.

11.7.2 Shift to right (SHR)

The SHR shift function shifts the contents of the tag present at the IN input bit by
bit to the right by the number of positions specified by the shift number at the N
input. The bit positions that become free through shifting are filled with the data
types SINT, INT, and DINT with the signal state of the most significant bit. The most
significant bit contains for the data types SINT, INT and DINT the sign of the fixed-
point number.

With a fixed-point number, shifting to the right corresponds to a division by a pow-
er to base 2. The exponent is then the shift number. The result of such a division cor-
responds to the rounded-off integer.

If the shift number = 0, the function is not executed, and the value at the IN param-
eter is output at the OUT parameter; if it is larger than the data width of the tag, it
is shifted by the available places.

11 Digital functions

390

Fig. 11.22 Conversion functions ATH and HTA

Conversion function ATH

H1

H1

H2

H2

H3

H3

H4

H4

H5

H5

0

x

A1

A1

A2

A2

A3

A3

A4

A4

A5

A5

Parameter N

Parameter N

Parameter IN

Parameter IN

Parameter OUT

Parameter OUT

ATH

HTA

ATH

HTA

EN

EN

EN

EN

N

N

N

N

RET_VAL

RET_VAL

OUT

OUT

OUT

OUT

ENO

ENO

ENO

ENO

RET_VAL

RET_VAL

LAD

LAD

FBD

FBD

IN

IN

IN

IN

Declaration

Declaration

Name

Name

EN

EN

IN

IN

ENO

ENO

N

N

RET_VAL

RET_VAL

OUT

OUT

–

–

INPUT

INPUT

–

–

INPUT

INPUT

RETURN

RETURN

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

USINT, UINT, INT

USINT, UINT, INT

WORD, DWORD

WORD, DWORD

VARIANT

VARIANT

VARIANT

VARIANT

Character sequence

Number of
characters (signs)

Error information

Number sequence

Character sequence

Number of
characters (signs)

Error information

Number sequence

Description

Description

Data type

Data type

Function:

Function:

Data type at the OUT parameter:

STRING, ARRAY OF CHAR,
ARRAY OF BYTE

BYTE, WORD, DWORD, USINT, UINT,
UDINT, SINT, INT, DINT, STRING,
ARRAY OF CHAR, ARRAY OF BYTE

BYTE, WORD, DWORD, USINT, UINT,
UDINT, SINT, INT, DINT, STRING,
ARRAY OF CHAR, ARRAY OF BYTE

STRING, ARRAY OF CHAR,
ARRAY OF BYTE

SCL

SCL

RET_VAL := ATH(
IN := ... ,
N := ... ,
OUT => ...);

RET_VAL := HTA(
IN := ... ,
N := ... ,
OUT => ...);

Conversion function ATH

ATH converts the character sequence
at the IN parameter to a hexadecimal
number and outputs it at the OUT
parameter. The parameter N specifies
the number of characters to be conver-
ted. The digits 0 to 9, the uppercase
letters A to F, and the lowercase letters
a to f are permissible. In the case of an odd quantity, a zero

is written into the last half-byte.

Data type at the IN parameter:

Data type at the IN parameter:

Data type at the OUT parameter:

Enabling input

Enabling output

Enabling input

Enabling output

HTA converts the hexadecimal num-
ber at the IN parameter to a character
sequence and outputs it at the OUT
parameter. The parameter N specifies
the number of characters to be con-
verted. The digits 0 to 9 and the upper-
case letters A to F are permissible.

http://pnap.ir/siemens-s71200-price-list/

11.7 Shift functions

391

11.7.3 Shift to left (SHL)

The shift function SHL shifts the contents of the tag at the IN input to the left,
bit-y-bit, by the number of positions specified by the shift number at the N input.
The bit positions which become vacant during shifting are padded with zeros.

With a fixed-point number, shifting to the left corresponds to a multiplication by a
power to base 2. The exponent is then the shift number.

If the shift number = 0, the function is not executed, and the value at the IN param-
eter is output at the OUT parameter; if it is larger than the data width of the tag, it
is shifted by the available places.

11.7.4 Rotate to right (ROR)

The shift function ROR shifts the contents of the tag at the IN input to the right,
bit-by-bit, by the number of places specified by the shift number at the N input.
The bit positions which become vacant during shifting are padded with the bit po-
sitions which have been shifted out.

If the shift number = 0, the function is not executed, and the value at the IN parameter
is output at the OUT parameter; if it is larger than the data width of the tag, it is rotat-
ed by the available places.

Fig. 11.23 Shift functions, representation and function

Function
Data type

Function
Data type

EN EN

OUT OUT

ENO

ENO

Shift functions

LAD FBD

IN

N N

IN

Function: SHR
SHL

Shift to right
Shift to left

Function: ROR
ROL

Rotate to right
Rotate to left

Data type: BYTE, WORD, DWORD,
SINT, INT, DINT, USINT, UINT, UDINT

Data type: BYTE, WORD, DWORD

DeclarationName

EN

ENO

IN

N

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

UINT

Data type

DescriptionData type

“0”

S

“0”

SHL

ROL

SHR

SHR

ROR

for SINT, INT, DINT:

for BYTE, WORD, DWORD, USINT, UINT, UDINT:

SCL
OUT := (IN := ... , N := ...);Function

Enabling input

Enabling output

Input tag

Number

Result

11 Digital functions

392

11.7.5 Rotate to left (ROL)

The shift function ROL shifts the contents of the tag at the IN input to the left,
bit-by-bit, by the number of places specified by the shift number at the N input.
The bit positions which become vacant during shifting are padded with the bit po-
sitions which have been shifted out.

If the shift number = 0, the function is not executed, and the value at the IN parameter
is output at the OUT parameter; if it is larger than the data width of the tag, it is rotat-
ed by the available places.

11.8 Logic functions

11.8.1 Introduction

The (digital) logic functions comprise the following functions:

b AND, OR, XOR
Word logic operations according to AND, OR, and XOR

b INV
Invert

b DECO, ENCO
Code bit and set bit number

b SEL, MUX, DEMUX, MIN, MAX, LIMIT
Selection functions, minimum and maximum selection, limiter

LAD and FBD: A logic function is performed if the enable input is “1” or if “current”
is flowing into the EN input or if EN is not connected. ENO is then “1”. In the event
of error, ENO is “0”. If the execution of the function is not enabled (EN = “0”), pro-
cessing does not take place and ENO is also “0”.

SCL: If the function execution is faulty, the tag ENO is set to FALSE.

11.8.2 Word logic operations (AND, OR, XOR)

The word logic operations link the values of two tags at the parameters IN1 and IN2
according to AND, OR, or XOR. Depending on the data type, the logic operation is
performed byte by byte, word by word, or doubleword by doubleword. The result is
output at the OUT parameter (Fig. 11.24).

The word logic operation generates the result bit by bit. Bit 0 of the IN1 input is
linked to bit 0 of the IN2 input; the result is saved in bit 0 of the OUT output. The
same logic operation takes place with bit 1, bit 2, etc.

AND operation

The AND logic operation links the individual bits of the value present at the IN1 in-
put to the corresponding bits of the value at the IN2 input according to AND.

11.8 Logic functions

393

The individual bits in the result word OUT only have signal state “1” if the corre-
sponding bits of both values to be linked have signal state “1”.

Since the bits with signal state “0” at the IN2 input also set these bits in the result
to “0”, independent of the assignments of these bits at the IN1 input, these bits are
referred to as being “masked”. This “masking” is the main field of application of the
(digital) AND logic operation.

OR logic operation

The OR logic operation links the individual bits of the value present at the IN1 input
to the corresponding bits of the value at the IN2 input according to OR. The individ-
ual bits in the result word OUT only have signal state “0” if the corresponding bits
of both values to be linked have signal state “0”.

Since the bits with signal state “1” at the IN2 input also set these bits in the result
to “1”, independent of the assignments of these bits at the IN1 input, these bits are
referred to as being “displayed”. This unmasking is the main field of application of
the (digital) OR logic operation.

Exclusive OR operation

The exclusive OR logic operation links the individual bits of the value present at the
IN1 input to the corresponding bits of the value at the IN2 input according to
Exclusive OR. The individual bits in the result word OUT only have signal state “1”
if just one of the corresponding bits of the two values to be linked has signal state
“1”. If a bit at the IN2 input has signal state “1”, this position in the result has the
inverted signal state of the bit at the IN1 input. In the result, only those bits have
signal state “1” which have different signal states in the two tags prior to the digital

Fig. 11.24 Word logic operations, representation and function

EN EN

OUT OUT

ENO

ENO

LAD FBD

IN1

IN2 IN2

IN1

Function:
AND
OR
XOR

AND Bit-by-bit AND operation
Bit-by-bit OR operation
Bit-by-bit exclusive OR operation

Data type:
BYTE, WORD, DWORD

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

DescriptionData type

Linking of individual bits:

Bit of parameter IN1
Bit of parameter IN2

Result with AND
Result with OR
Result with XOR

SCL
OUT := IN1 IN2;Function

Enabling input

Enabling output

Input tag 1

Input tag 2

Result

“0” “0”
“0” “0”

“0” “0” “0”
“0”
“0” “0”

“1” “1”
“1”

“1”
“1” “1” “1”
“1” “1”

“1”

Digital logic operations AND, OR and XOR

Function
Data type

Function
Data type

11 Digital functions

394

Exclusive OR operation. The finding of the bits occupied by different signal states
together with the negation of the signal states of individual bits is the main field of
application of the (digital) Exclusive OR logic operation.

11.8.3 Invert (INV)

The inversion negates the value at parameter IN bit by bit and writes it to the tag at
parameter OUT. The bit-by-bit negation replaces the zeros with ones and vice versa.
The function INV does not report any errors (Fig. 11.25).

11.8.4 Coding functions DECO and ENCO

The coding functions comprise the DECO functions (converting a binary number
into a bit pattern) and ENCO (converting a bit pattern into a binary number). Fig.
11.26 shows these functions.

Code bit DECO

DECO sets the bit whose number is at the IN parameter in the bit sequence tag at
the OUT parameter. All other bits are set to signal state “0”. Depending on the data
type at the OUT parameter, only some of the bits are selected in the IN parameter:
3 bits (range 0 to 7) for BYTE, 4 bits (range 0 to 15) for WORD, and 5 bits (range 0 to
31) for DWORD. The function DECO does not report any errors.

SCL: DECO returns the output parameter as function value. Its data type is DWORD
by default. If the function value has a different data type, the data type is “attached”
to the function name with an underscore. Example:

#var_byte := DECO_BYTE(#var_usint);

Fig. 11.25 Inverting, representation and function

INV INV
Data type Data type

EN EN

OUT

OUTENO

ENO

Invert

LAD FBD

IN IN

Function:

The inverted value of the tag at the IN parameter is output
at the OUT parameter.

Data type:

BYTE, WORD, DWORD, USINT, UINT, UDINT, SINT, INT, DINT

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Datentyp

Datentyp

DescriptionData type

Linking of individual bits:

Bit of IN parameter

Bit of OUT parameter

SCL OUT := NOT IN;

Enabling input

Enabling output

Input tag

Result

“0”

“0”

“1”

“1“

11.8 Logic functions

395

Set bit number ENCO

ENCO searches for the first bit set to signal state “1” in the bit sequence tag at the
IN parameter starting from the right (starting with bit number 0) and outputs its
number at the OUT parameter. If no bit is set, the number 0 is output at the OUT
parameter and signal state “0” at the ENO output.

SCL: ENCO returns the output parameter as function value.

11.8.5 Selection functions SEL, MUX, and DEMUX

Depending on a switch (parameter G), SEL selects one of two tag values (parameters
IN0 and IN1) and outputs it at parameter OUT. If the signal state is “0” at parameter
G, the tag at parameter IN0 is selected; if it is “1”, the tag at parameter IN1 is selected.
The SEL function does not report any errors (Fig. 11.27).

Fig. 11.26 Code bit, representation and function

DECO

ENCO ENCO

DECO

EN

EN

EN

EN

OUT

OUT

OUT

OUT

ENO

ENO

ENO

ENO

Set coded bit

Determine bit number

LAD

LAD

FBD

FBD

IN

IN

IN

IN

Declaration

Declaration

Name

Name

EN

EN

ENO

ENO

IN

IN

OUT

OUT

–

–

–

–

INPUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

USINT, UINT

Data type*)

Data type 1*)

Data type 2*)

Description

Description

Data type

Data type

UINT TO DT

Data type Data type

Data type

*)

*) Data type 1 = BYTE, WORD, DWORD
*) Data type 2 = INT, DINT, REAL, LREAL

Parameter OUT

Parameter IN

Parameter IN

Parameter OUT

The bit is set in the OUT parameter to “1”
whose number is specified at the IN para-
meter. The other bits are set to “0”.

The number of the least significant bit
with signal state “1” at the IN parameter
is output at the OUT parameter.

Function:

Function:

0

0

n

n

0

0

...

...

0

0

...

...

0

1

...

...

0

0

...

...

0

1

...

...

0

0

...

...

0

0

...

...

0

0

...

...

1

1

...

...

0

0

...

...

0

0

...

...

0

0

3

3

0

0

2

2

0

0

1

1

0

0

0

0

SCL

SCL

OUT := DECO_ (IN);Datentyp

OUT := ENCO(IN);

Enabling input

Enabling output

Number

Bit sequence

Enabling input

Enabling output

Bit sequence

Number

Data type (DT) = BYTE, WORD, DWORD

11 Digital functions

396

Dependent on the value of the K parameter, MUX outputs a tags at the box inputs
(parameters IN0 to INn and ELSE) at the OUT parameter. The MUX box is initially
offered by the program editor with a choice of two input values (IN0, IN1) and can
then be expanded to multiple values. MUX selects from these tag values (IN0 to INn)
the one whose number is specified at parameter K. If K = 0, the tag at IN0 is selected;
if K = 1, the tag at IN1, etc.

Fig. 11.27 Binary selection SEL, representation and function

Fig. 11.28 Multiplexing MUX, representation and function

EN EN

OUT

OUT

ENO

ENO

Binary selection SEL

LAD FBD

G

IN0

IN1

G

IN0

IN1

Data type:

USINT, UINT, UDINT, SINT, INT, DINT,
REAL, LREAL,
BYTE, WORD, DWORD, CHAR, TIME,

DeclarationName

EN

ENO

G

IN0

IN1

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

BOOL

Data type

Data type

Data type

DescriptionData type SEL SEL

Function:

SCL OUT := SEL(G := ... , IN0 := ... , IN1 := ...);

Enabling input

Enabling output

Switch

Input tag 0

Input tag 1

Result

Data type Data type

With signal state “0” at parameter G, the value at
parameter IN0 is transferred to the parameter OUT,
otherwise the value at parameter IN1.

EN EN

OUT

OUT

ENO

ENO

Multiple selection MUX

LAD FBD

K

IN0

IN1

ELSE ELSE

K

IN0

IN1

Data type :

USINT, UINT, UDINT, SINT, INT, DINT,
REAL, LREAL,
BYTE, WORD, DWORD, CHAR, TIME

DeclarationName

EN

ENO

K

IN1

IN0

ELSE

OUT

-

-

INPUT

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

UINT

Data type

Data type

Data type

Data type

Substitute value

Result

DescriptionData typeMUX MUX

Function:

SCL OUT := MUX(K := ... , IN1 := ... , IN2 := ... ,

* *

INELSE := ...);

Enabling input

Enabling output

Auswahl

Input tag 1

Input tag 0

Data type Data type

Depending on the assignment of parameter K,
MUX transfers the value of an input parameter IN
to the output parameter OUT. If the value at K is
greater than the number of inputs, the value at
the ELSE or INELSE parameter is transferred to
the output.

http://pnap.ir/siemens-s71200-price-list/

11.8 Logic functions

397

If the value of K is outside the range of input parameters IN0 to INn, the alternative
value is output by parameter ELSE; if ELSE is not supplied, OUT remains
unchanged. ENO is set to signal state “0” in both cases (Fig. 11.28).

Dependent on the value of the parameter K, DEMUX issues the tag at the input
(parameter IN) to a parameter OUT0 to OUTn, or ELSE or OUTELSE. DEMUX is ini-
tially offered by the program editor with a choice of two output values (OUT0,
OUT1) and can then be extended to multiple values. DEMUX selects from these tag
values (OUT0 to OUTn) the one whose number is specified at parameter K. If K = 0,
the tag at OUT0 is selected; if K = 1, the tag at OUT1, etc.

If the value of K is outside the range output parameters OUT0 to IOUTn, the value is
output alternatively at parameter ELSE or OUTELSE ; if ELSE or OUTELSE is not sup-
plied, ENO is set to signal state “0” (Fig. 11.29).

11.8.6 Minimum selection MIN, Maximum selection MAX

The minimum selection MIN transfers the lowest of the values at input parameters
to parameter OUT. With LAD and FBD up to 100 inputs and with SCL up to 32
inputs can be configured. If there is an invalid REAL number at the input parame-
ters, the function is not executed and the enable output ENO is set to signal state
“0” (Fig. 11.30).

The maximum selection MAX transfers the highest of the values present at the
input parameters to the parameter OUT. With LAD and FBD up to 100 inputs and
with SCL up to 32 inputs can be configured. If an invalid REAL number is present at

Fig. 11.29 Demultiplexing DEMUX, representation and function

EN EN

OUT0

OUT1

ELSE

ELSE

OUT1

OUT0ENO

ENO

Demultiplexing DEMUX

LAD FBD

K

IN

K

IN

Data type:

USINT, UINT, UDINT, SINT, INT, DINT,
REAL, LREAL,
BYTE, WORD, DWORD, CHAR, TIME

DeclarationName

EN

ENO

K

OUT0

IN

OUT1

ELSE

–

–

INPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

UINT

Data type

Data type

Data type

Data type

DescriptionData typeDEMUX DEMUX

Function:

SCL DEMUX(K := ... , IN := ... , OUT1 => ... , OUT2 => ... , OUTELSE => ...);

*
*

Output tag 1

Substitute output

Enabling input

Enabling output

Selection

Output tag 0

Input tag

Data type Data type

Depending on the assignment of parameter K,
DEMUX transfers the value of the input parameter
IN to an output parameter OUT. If the value at K is
greater than the number of outputs, the value at
the IN parameter is transferred to the ELSE or
OUTELSE output.

11 Digital functions

398

the input parameters, the function is not executed, and the enabling output ENO is
set to signal state “0”.

11.8.7 Limiter LIMIT

The limiter LIMIT compares the value at parameter IN with the values of the
parameters MIN and MAX. If the value at IN is between the limits, it is output at
parameter OUT; it is less than MIN, the value is output at OUT; if it is above MAX,
the value goes to MAX. The upper and lower limits can also be assigned constant
values (Fig. 11.31).

If there is an invalid REAL number at the parameters MIN, IN, or MAX, an invalid
REAL number is output and the enable output ENO is set to signal state “0”. The
enable output is also set to “0” if the value at parameter MIN is greater than the
value at parameter MAX; the value is then output at parameter IN.

11.9 Processing of strings (Data type STRING)

A string can be processed using the following functions:

b LEN Outputs the length of a string
b CONCAT Combines two strings together
b LEFT Outputs the left part of a string
b RIGHT Outputs the right part of a string
b MID Outputs the middle part of a string
b DELETE Deletes part of a string
b INSERT Inserts characters into a string
b REPLACE Replaces characters in a string
b FIND Outputs the position of a searched character

Fig. 11.30 Minimum and maximum selection, representation and function

EN EN

OUT

ENO

OUT

ENO

Minimum selection MIN, Maximum selection MAX

LAD FBD

IN1

IN2

IN1

IN2

Function:

MIN

MAX

Minimum selection

Maximum selection

Data type:

USINT, UINT, UDINT,
SINT, INT, DINT,
REAL, LREAL

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

DescriptionData type

SCL OUT := (IN1 := ... , IN2 := ...);Function

* *

Enabling input

Enabling output

Input tag 1

Input tag 2

Result

Function
Data type

Function
Data type

The lowest input value is copied to
the OUT output.

The highest input value is copied to
the OUT output

http://pnap.ir/siemens-s71200-price-list/

11.9 Processing of strings (Data type STRING)

399

All functions for string processing expect a valid string with plausible values in the
length bytes at the parameters with data type STRING (maximum length 254,
actual length maximum length). Strings which you do not assign with default val-
ues during their declaration are automatically assigned as an empty string (actual
length = 0) of maximum length (= 254).

Note that you cannot assign default values to strings which you declare in the tem-
porary local data. In this case you must assign a defined value (this can also be an
empty string) to a STRING tag in the program before you use the STRING tag togeth-
er with a function or block.

11.9.1 Output length of a string LEN

The LEN function outputs the current length of a string present at the IN parameter
at the OUT parameter. For an “empty” string, the current length is zero. The maxi-
mum length of a string is 254 characters. LEN returns an error on incorrect param-
eter assignment (Fig. 11.32).

Fig. 11.31 Limiter LIMIT, representation and function

Fig. 11.32 Output length of a string LEN, function and representation

EN EN

OUT

ENO

OUT

ENO

Limiter LIMIT

LAD FBD

MN

IN

MX

MN

IN

MX

Data type:

USINT, UINT, UDINT, SINT, INT, DINT,
REAL, LREAL

Function:

DeclarationName

EN

ENO

MN

IN

MX

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

Data type

DescriptionData typeLIMIT
Data type

LIMIT
Data type

SCL OUT := LIMIT(MN := ... , IN := ... , MX := ...);

Enabling input

Enabling output

Lower limit

Input tag

Upper limit

Result

The value of the tag at the IN parameter is
limited to the MIN and MAX limits, and output
at the OUT parameter.

EN EN

OUT

ENO OUT

ENO

Output length of a string LEN

LAD FBD

IN IN

DeklarationName

IN

OUT

INPUT

OUTPUT

STRING

INT

String

Actual length

DescriptionData typeLEN
String

LEN
String

Function:

LEN outputs the length of the string present at the IN parameter at the OUT parameter.

SCL OUT := LEN(IN);

http://pnap.ir/siemens-s71200-price-list/

11 Digital functions

400

11.9.2 Combine strings CONCAT

The CONCAT function combines the STRING tags at parameters IN1 and IN2 into
a single tag and outputs it at parameter OUT. The string of IN2 is appended to the
string of IN1. If the length of both source strings exceeds the maximum length of
the target string, they are truncated to the maximum length and ENO is set to “0”
(Fig. 11.33).

11.9.3 Output left part of string LEFT

The function LEFT returns the first characters of the string, whose number is spec-
ified at parameter L, at the IN parameter and writes it as a STRING tag to the OUT
parameter. If L is greater than the current length of the input tags, the input value
is output. With an empty string as the input value, an empty string is output. If L is
equal to zero or negative, an empty string is output and ENO is set to “0” (Fig. 11.34).

Fig. 11.33 Combining two strings CONCAT, function and representation

Fig. 11.34 Output left or right part of a string LEFT and RIGHT

EN EN

OUT

ENO

OUT

ENO

Combination of two strings CONCAT

LAD FBD

IN1

IN2

IN1

IN2

CONCAT CONCAT

Function:

DeclarationName

IN1

IN2

OUT

INPUT

INPUT

OUTPUT

STRING

STRING

STRING

DescriptionData type

SCL OUT := CONCAT(IN1 := ... , IN2 := ...);

String 1

String 2

Result

String String

CONCAT adds the string at the IN2 parameter to the string at the IN1 parameter, and outputs
the result at the OUT parameter.

DeclarationName

IN

L

OUT

INPUT

INPUT

OUTPUT

STRING

INT

STRING

DescriptionData type

EN EN

OUT

ENO

OUT

ENO

Output left or right part of a string LEFT, RIGHTen

LAD FBD

IN

L

IN

L

Function:

SCL OUT := (IN := ... , L := ...);Function

String

Number of charact.

Result

Function Function
String String

LEFT extracts the number of characters specified in the L parameter from the string at the IN1
parameter starting at position 1, and outputs the result at the OUT parameter.

RIGHT takes from the string at parameter IN1 the number of characters specified by parameter L
from the last position and outputs the result at parameter OUT.

11.9 Processing of strings (Data type STRING)

401

11.9.4 Output right part of string RIGHT

The RIGHT function delivers the last characters (whose number is specified at the
L parameter) from the string applied to the IN parameter, and writes them as a
STRING tag to the OUT parameter. If L is greater than the current length of the input
tags, the input value is output. An empty string is output if the input value is an
empty string. If L is equal to zero or negative, an empty string is output and ENO is
set to “0” (Fig. 11.34).

11.9.5 Output middle part of string MID

The MID function extracts a middle section of the string present at the IN parame-
ter, and outputs it at the OUT parameter. The middle section starts at the position
specified at the P parameter, and has as many characters as defined by the L param-
eter (Fig. 11.35).

If the sum of P and L exceeds the current length of the input tags, a string beginning
at position P and reaching to the end is output. If P is outside the current length of
IN, a blank string is output and ENO is set to “0”. If P or L is zero or negative, a blank
string is output and ENO is set to “0”.

11.9.6 Delete part of a string DELETE

The DELETE function removes part of the string at the IN parameter and outputs the
“collapsed” remainder at the OUT parameter. The removed part begins at the char-
acter position specified by parameter P and has as many characters as specified in
parameter L (Fig. 11.36).

Fig. 11.35 Output the middle part of a string MID, function and representation

DeclarationName

IN

L

P

OUT

INPUT

INPUT

INPUT

OUTPUT

STRING

INT

INT

STRING

DescriptionData type

EN EN

OUT

ENO

OUT

ENO

Output middle section of a string MID

LAD FBD

IN

L

P

IN

L

P

MID MID

Function:

MID extracts the number of characters specified in the L parameter from the string at the IN1
parameter starting at position P, and outputs the result at the OUT parameter.

SCL OUT := MID(IN := ... , L := ... , P := ...);

Input tag

Number of charact.

Character position

Output tag

String String

11 Digital functions

402

If L is equal to zero, the input string is output. If P is greater than the current length
of the input tag, this tag is output and ENO is set to “0”. If the sum of P and L is great-
er than the current length of the input tag, the string is deleted up to the end. If L
is negative or if P is zero or negative, an empty string is output and ENO is set to “0”.

11.9.7 Insert string INSERT

The INSERT function inserts the string at the IN2 parameter into the string at the
IN1 parameter and outputs the result at the OUT parameter. Parameter P specifies
the position from which the insertion is to take place (Fig. 11.37).

If P is equal to zero or negative, an empty string is output and ENO is set to “0”. If
P is greater than the current length of IN1, IN2 is appended to IN1, and ENO is set

Fig. 11.36 Delete part of string DELETE, function and representation

Fig. 11.37 Insert string INSERT, function and representation

DeclarationName

IN

L

P

OUT

INPUT

INPUT

INPUT

OUTPUT

STRING

INT

INT

STRING

DescriptionData type

EN EN

OUT

ENO

OUT

ENO

Delete part of a string DELETE

LAD FBD

IN

L

P

IN

L

P

DELETE
String

DELETE
String

Function:

DELETE deletes the number of characters specified in the L parameter from the string at the IN
parameter starting at position P, and outputs the result at the OUT parameter.

SCL OUT := DELETE(IN := ... , L := ... , P := ...);

Input tag

Number of charact.

Character position

Output tag

DeclarationName

IN1

IN2

P

OUT

INPUT

INPUT

INPUT

OUTPUT

STRING

STRING

INT

STRING

DescriptionData type

EN EN

OUT

ENO

OUT

ENO

Insert string into another string INSERT

LAD FBD

IN1

IN2

P

IN1

IN2

P

INSERT
String

INSERT
String

Function:

INSERT inserts the string IN2 into the string at the IN1 parameter starting at position P, and
outputs the result at the OUT parameter.

SCL OUT := INSERT(IN1 := ... , IN2 := ... , P := ...);

Input tag

String to be
inserted

Character position

Output tag

11.9 Processing of strings (Data type STRING)

403

to “0”. If the new string is longer than the maximum length permitted by the out-
put string, the characters are entered up to the permissible length, and ENO is set
to “0”.

11.9.8 Replace part of string REPLACE

REPLACE replaces characters present in the string at the IN1 parameter by the
string at the IN2 parameter and outputs the result at the OUT parameter. Beginning
with the position specified by parameter P, the characters are replaced for a length
given at parameter L (Fig. 11.38).

If L is equal to zero, the IN2 string is inserted into the IN1 string from position P
without deleting characters in IN1. If P is equal to 1, the first L characters of IN1 are
replaced by IN2. If P is greater than the current length of IN1, IN2 is appended to
IN1, and ENO is set to “0”. If L is negative or if P is zero or negative, an empty string
is output and ENO is set to “0”. If the new string is longer than the maximum length
of the output string, only the maximum length is output, and ENO is set to “0”.

11.9.9 Find part of string FIND

the FIND function determines the position of the string at parameter IN2 in the
string at parameter IN1 and outputs it at the OUT parameter. The position of the
first character is output if a match has been found. If IN2 is not contained in IN1,
zero is returned (Fig. 11.39).

Fig. 11.38 Replace part of string REPLACE, function and representation

DeclarationName

IN1

IN2

L

P

OUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

STRING

STRING

INT

INT

STRING

DescriptionData type

EN EN

OUT

ENO

OUT

ENO

Replace string in a different string REPLACE

LAD FBD

IN1

L

IN2

P

IN1

L

IN2

P

REPLACE
String

REPLACE
String

Function:

SCL OUT := REPLACE(IN1 := ... , IN2 := ... , L := ... , P := ...);

Input tag

String to be
inserted

Number of charact.

Character position

Output tag

REPLACE replaces the number of characters specified in the L parameter in the string at the IN1
parameter with the string IN2 starting at position P, and outputs the result at the OUT parameter.

11 Digital functions

404

11.10 Calculating with the CALCULATE box
in LAD and FBD

The CALCULATE box can link digital tags with arithmetic, mathematical, and logi-
cal functions in a complex expression with each other. You define the tags to be
linked as input parameters of the box and specify the data type of the expression
(the output parameter). The logic operation function is specified in a dialog (Fig.
11.40).

In the basic state, the box contains two inputs. The number of inputs can be
increased. The inputs are numbered without gaps. Not all inputs must be used in
the expression. If, when defining the expression, a (new) input with the next avail-
able number is used, the input is automatically added. In the expression, only the
tags defined as input parameters may be used.

After inserting the CALCULATE box, select the data type of the expression (the out-
put parameter OUT) from a drop-down list. The input parameters will automati-
cally be given the same data type. The actual operands must be of the same data
type or a data type that can be converted using implicit conversion to the data type
of the input parameter. Example: If you select data type LREAL for the expression,
an actual operand with the data type REAL or LREAL can be created at an input.

In the expression, the input tags can be linked with each other according to their
data type. The order of the linking can be controlled using brackets.

Linking of bit strings

Input parameters with the data types BYTE, WORD, and DWORD can be used in con-
nection with the word logic operations AND (digital AND logic operation), OR (dig-
ital OR logic operation), and XOR (digital exclusive OR logic operation). A bit string
can be inverted with the NOT operator (one's complement formation INV). With
SWAP(), the bytes of a bit string can be replaced.

Fig. 11.39 Find part of string FIND, function and representation

EN EN

OUT

ENO

OUT

ENO

Find string in a different string FIND

LAD FBD

IN1

IN2

IN1

IN2

DeclarationName

IN1

IN2

OUT

INPUT

INPUT

OUTPUT

STRING

STRING

INT

DescriptionData typeFIND
String

FIND
String

Function:

FIND searches for string IN2 in the string at the IN1 parameter, and outputs its position at the
OUT parameter.

SCL OUT := FIND(IN1 := ... , IN2 := ...);

Input tag

String to be
found

Output tag

11.10 Calculating with the CALCULATE box in LAD and FBD

405

Linking of fixed-point numbers

Input parameters with data types USINT, UDINT, SINT, INT, and DINT can be used as
a result (MOD) in conjunction with the arithmetic functions add (+), subtract (-),
multiply (*), division (/), and division with the rest. From fixed-point numbers, the
one's complement INV (operator: NOT), the two's complement (operator: – , multi-
plication by – 1) and the absolute value (ABS()) are formed.

Linking of floating-point numbers

Input parameters with the data types REAL and LREAL can, in addition to the arith-
metic functions add (+), subtract (–), multiply (*) and divide (/), also be used in
connection with the mathematical functions SQR (generate square), SQRT (gener-
ate square root), LN (generate natural logarithm) and EXP (generate exponential
value), with the trigonometric functions SIN (sine), COS (cosine), TAN (tangent),
ASIN (arcsine), ACOS (arccosine) and ATAN (arctangent), with the conversion func-
tions ROUND (round), TRUNC (“truncate” decimal places), FRAC (determine deci-
mal places), CEIL (generate next highest fixed-point number) and FLOOR (generate
next lowest fixed-point number) as well as in connection with the two's complement
(–, multiplication by –1) and absolute-value generation ABS.

Fig. 11.40 CALCULATE box, representation and function

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

DescriptionData type

CALCULATE
Data type

CALCULATE
Data type

EN EN

IN1 IN1

IN2 IN2

ENO

ENO

OUT OUT

CALCULATE box

LAD FBD

Data types: Usable functions:

BYTE, WORD, DWORD, AND, OR, XOR, NOT (INV), SWAP()

USINT, UINT, UDINT, +, –, *, /, MOD, NOT (INV), – (NEG), ABS()

REAL, LREAL

SINT, INT, DINT

+, –, *, /, MOD, NOT (INV), – (NEG), ABS()
SQR(), SQRT(), LN(), EXP(),
SIN(), COS(), TAN(), ASIN(), ACOS(), ATAN(),
TRUNC(), ROUND(), CEIL(), FLOOR(), FRAC()

Function:

* *

OUT := ...(expression)... OUT := ...(expression)...

The input tags are linked to each other
according to a freely defined expression
and the result is output at the parameter
OUT. The number of input parameters
can be expanded.

Enabling input

Enabling output

Input tag 1

Input tag 2

Result

12 Program flow control

406

12 Program flow control

This chapter describes the functions for controlling program execution, indepen-
dent of the programming language as far as possible. The Chapters 7 “Ladder logic
LAD” on page 209, 8 “Function block diagram FBD” on page 246, and 9 “Structured
Control Language SCL” on page 284 describe how you can program the functions
using the individual programming languages and what special features exist.

The jump functions allow program branches dependent upon or independently of
the logic operation, a numerical value, or a comparison with a numerical value. The
control statements which are only present with SCL for controlling program execu-
tion are described in Chapter 9.6.3 “Control statements” on page 307.

The block functions are used to structure the user program. A block end function
prematurely terminates the processing in a block, the block call functions call
another block for processing. A block call is parameterizable and can be used mul-
tiple times with different parameters. A block call can be controlled using the
enable input EN and the enable output ENO.

12.1 Jump functions

12.1.1 Overview

Jump functions interrupt linear program execution in the block and continue at a
different point in the program in the block. This point is identified by means of a
jump label which you specify in the jump statement as the jump destination. The
jump function and destination must be in the same block. The jump destination or
label must be unique within a block. It is permissible to jump to a destination from
more than one position. Both forward and backward jumps are possible with regard
to the direction of program execution.

The following jump functions are available:

b Absolute jump, is always executed during processing.

b Conditional jump, is executed depending on the result of logic operation.

b Jump list, branches depending on a value

b Jump distributor, branches depending on a comparison result

Jump list and jump distributor are available in the described form for LAD and FBD.
SCL uses control statements for program branches.

12.1 Jump functions

407

12.1.2 Absolute jump

An absolute jump is carried out independent of conditions. The absolute jump
interrupts linear program execution and continues it at a the specified jump label.
Fig. 12.1 shows the implementation of the jump function in the various program-
ming languages.

Absolute jump function JMP (LAD and FBD)

The jump functions consist of the jump statement (coil or box) and a jump label.
The jump label (jump destination) identifies the entry point in the block at which
program execution is continued when the jump function has been processed.

The jump function JMP is connected to the left-hand power rail or does not have a
preceding logic operation. The entry point can only be positioned at the start of a
network. Only one jump statement ore one block end function is permissible per
network.

Absolute jump GOTO (SCL)

The jump function GOTO interrupts the linear program execution and continues it
at a different position in the block. If statements form a defined block, e.g. a pro-
gram body within a program loop, the jump destination must be within this state-

Fig. 12.1 Absolute jump function JMP or GOTO

GOTO Destination ;
... ;
... ;

JMP

Destination

Destination

JMP

LAD

FBD

SCL

The absolute jump is executed independent of conditions during processing.

Destination

Destination

Absolute jump

If the JMP coil (jump with RLO = “1”) is connected to
the left busbar, the jump function is always executed
during processing.

The jump destination (jump label) is located at the
beginning of the network in which the processing of
the program is to be continued.

Destination: ... ;

If the input is not connected on the JMP box (jump with
RLO = “1”), the jump function is always executed during
processing.

The jump destination (jump label) is located at the
beginning of the network in which the processing of
the program is to be continued.

The GOTO statement is always executed during
processing.

The jump destination (jump label) is located at the
beginning of the program line in which processing is
to be continued."

http://pnap.ir/siemens-s71200-price-list/

12 Program flow control

408

ment block if the GOTO statement is also within the statement block, and it cannot
jump to this statement block “from the outside”.

A jump label must always be followed by a statement. A “dummy statement” is also
permissible:

Label: ; //Entry with “dummy statement”

12.1.3 Conditional jump

A conditional jump is executed depending on the result of logic operation (RLO).
Program execution is continued at the specified jump label with RLO = “1” or with
RLO = “0” depending on the jump function. Fig. 12.2 shows the implementation of
the conditional jump function in the various programming languages.

Fig. 12.2 Conditional jump functions JMP and JMPN

JMP

JMPN

Destination

Destination

Destination

Destination

JMP

JMPN

LAD

FBD

SCL

The conditional jump is executed depending on the result of logic operation (RLO).

(VKE)

(VKE)

(RLO)

(RLO)

Destination

Destination

IF (*RLO*) THEN GOTO Destination; END_IF;
IF NOT (*RLO*) THEN GOTO Destination; END_IF;
... ;
... ;
Destination: ... ;

Conditional jump

The JMP jump function is executed if RLO = “1” during
processing. RLO = “0” has no effect.

The JMPN jump function is executed if RLO = “0” during
processing. RLO = “1” has no effect.

The jump destination (jump label) is located at the
beginning of the network in which the processing of
the program is to be continued.

The JMP jump function is executed if RLO = “1” during
processing. RLO = “0” has no effect."

The JMPN jump function is executed if RLO = “0” during
processing. RLO = “1” has no effect."

The jump destination (jump label) is located at the
beginning of the network in which the processing of
the program is to be continued.

A jump that depends on the result
of logic operation can be programmed
with the IF statement.

The jump destination (the jump label)
is located at the beginning of the program
line in which processing is to be continued.

http://pnap.ir/siemens-s71200-price-list/

12.1 Jump functions

409

Conditional jump functions JMP and JMPN (LAD and FBD)

The jump functions consist of the jump statement (coil or box) and a jump label.
The jump label (jump destination) identifies the entry point in the block at which
program execution is continued when the jump function has been processed.

JMP branches to the entry point if the preceding logic operation is fulfilled; JMPN
branches to the entry point if the preceding logic operation is not fulfilled. The
jump functions terminate a current path or a logic operation. The entry point can
only be positioned at the start of a network.

Conditional jump functions with SCL

With SCL, the dependency of the jump statement GOTO on the result of logic oper-
ation can be emulated, for example, by an IF statement:

IF (* Condition *) THEN GOTO Destination; END_IF;

Further information on the IF statement can be found in Chapter 9.6.3 “Control
statements” on page 307.

12.1.4 Jump list JMP_LIST

In LAD and FBD, the jump list JMP_LIST allows jumping to a program part in the
block depending on a numerical value. In SCL, the CASE statement can be used for
this functionality (Fig. 12.3).

Jump list with LAD and FBD

With the JMP_LIST box you define a list of jump labels. The two output parameters
DEST0 and DEST1, where you specify one jump label each, are displayed when the
box is inserted. The list can be expanded up to 99 jump labels. The jump destina-
tions are in the same block at the beginning of a network.

JMP_LIST executes a jump dependent upon the value at parameter K. If K has a
value of zero, processing of the program continues at the point defined by the jump
label at parameter DEST0. If K has a value of one, the jump label at parameter
DEST1 is selected, etc. If the value of K is greater than the number of defined jump
labels, processing of the program continues in the next network.

The enable input EN can be used to control processing of the JMP_LIST box. The box
is present alone in a network.

Jump list with SCL

With SCL, the dependency of the jump statement GOTO on a numerical value can
be emulated, for example, by a CASE statement. For more information on the
CASE statement, refer to Chapter 9.6.3 “Control statements” on page 307.

12 Program flow control

410

12.1.5 Jump distributor SWITCH

In LAD and FBD, the jump distributor SWITCH allows jumping to a program part in
the block depending on a comparison with a numerical value. In SCL, the IF state-
ment can be used for this functionality (Fig. 12.4).

Jump distributor with LAD and FBD

With the SWITCH box you define a list of jump labels. The two output parameters
DEST0 and DEST1, where you specify one jump label each, are displayed when the
box is inserted. The list can be expanded up to 99 jump labels. The jump destina-
tions are in the same block at the beginning of a network.

SWITCH executes a jump dependent upon a comparison with the parameter K.
The value to which K is to be compared is specified by you at a (comparison) input
parameter. You can select the comparison function from a drop-down box at this
input parameter. An additional (comparison) input parameter is provided for
each newly inserted jump label.

You can set the data type of parameter K and of the (comparison-) inputs at the
SWITCH box. Tags with the data types BYTE, WORD, and DWORD can only be com-
pared to determine “equal to” or “not equal to”.

Fig. 12.3 Jump list JMP_LIST

Jump depending on a numerical value

LAD FBD

SCL

Destination

CASE K OF
0 : GOTO Destination1;
1 : GOTO Destination2;
... ;
ELSE : GOTO ... ;
END_CASE;
... ;
Destination1: ... ;
... ;
Destination2: ... ;

EN ENDEST0 DEST0

DEST1 DEST1K K

DeclarationName

EN

K

DEST1

DEST0

–

INPUT

–

–

BOOL

UINT

–

–

Enabling input

Selection

Jump label 1

Jump label 0

DescriptionData typeJMP_LIST JMP_LIST

* *

The jump list is used to define jump functions which are executed depending
on a numerical value.

The jump destinations (jump labels) are located at
the beginning of the network in which the processing
of the program is to be continued.

A jump that depends on a numerical value can be
programmed with the CASE statement.

The jump destinations (the jump labels) are located
at the beginning of the program line in which
processing is to be continued.

12.1 Jump functions

411

If the first comparison is fulfilled, processing of the program continues at the point
defined by the jump label at parameter DEST0. If the second comparison is fulfilled,
the jump label at parameter DEST1 is selected, etc. If none of the comparisons is ful-
filled, processing of the program continues at the jump label specified at parameter
ELSE. If ELSE is not assigned, the next network is processed in this case.

The enable input EN can be used to control processing of the SWITCH box.

Jump distributor with SCL

With SCL, the dependency of the jump statement GOTO on a comparison with a
numerical value can be emulated, for example, by an IF statement. For more
information on the IF statement, refer to Chapter 9.6.3 “Control statements” on
page 307.

Fig. 12.4 Jump distributor SWITCH

A jump that depends on a comparison with a numerical value

LAD FBD

SCL

Data type:

BYTE, WORD, DWORD, USINT, UINT, UDINT,
SINT, INT, DINT, REAL, LREAL, TIME, DATE, TOD

Destination

IF K <Comparison> Value0 THEN GOTO Destination1; END_IF;

... ;
GOTO ... ; //ELSE branch
... ;
... ;
Destination1: ... ;
... ;
Destination2: ... ;

IF K <Comparison> Value1 THEN GOTO Destination2; END_IF;

EN ENDEST0

DEST0

DEST1

DEST1

ELSE

ELSEK K

== ==

== ==

DeclarationName

EN

K

== *)

DEST1

== *)

DEST0

ELSE

*) Selection of the type of comparison from a drop-down menu

–

INPUT

INPUT

–

INPUT

–

–

BOOL

Data type

Data type

–

Data type

–

–

Enabling input

Selection

Comparison value 1

Jump label 1

Comparison value 0

Jump label 0

Jump label x

DescriptionData typeSWITCH
Data type

SWITCH
Data type

*

*

The jump distributor is used to define jump functions which are executed depending on
a comparison with a numerical value.

The jump destinations (jump labels) are located at
the beginning of the network in which the processing
of the program is to be continued.

A jump that depends on a compa-
rison with a numerical value can be
programmed with IF statements.

The jump destinations (jump labels)
are located at the beginning of the
program line in which processing
is to be continued.

12 Program flow control

412

12.2 Block end function

You can use the block end function RET or RETURN to prematurely terminate pro-
cessing in a block (Fig. 12.5).

Block end with LAD and FBD

The block end function is programmed as a RET coil or RET box at the end of a net-
work. If the preceding logic operation has been completed, the block is left (condi-
tional block end). A return is made to the previously processed block in which the
block call was present. If an organization block is terminated, a branch is made to
the operating system. If the preceding logic operation has not been completed, the
next network in the block is processed.

If the RET coil is connected to the left-hand power rail or if the RLO is fixed at “1” at
the box input or is unused, the block is always left (absolute block end). A subse-
quent network can then only be processed if it has a jump label and is accessed by
a jump function.

In the return tags, a signal state can be saved, which is mapped to the ENO output at
the call box (see Chapter 12.4 “EN/ENO mechanism” on page 417). To set the return
tags, double-click on the RET function and select Ret from the drop-down box (RLO,
corresponds to the result of logic operation), Ret True or Ret False for a constant
value, or Ret Value for a tag. If an organization block ends with the block end func-
tion, the signal state of the return tags has no meaning.

In a network with a jump function JMP or JMPN, there can be no Block end function.
The block end function can be programmed multiple times in a block. The block
end function is not needed to end a block. It does not need to be programmed at the
end of a block.

Fig. 12.5 Block end function RET or RETURN

Block end function

RET

RET

LAD

FBD

SCL

Function:

ENO := ... ;
RETURN;
...
...
...
IF <Condition> THEN RETURN;
END_IF;

Exiting the block dependent upon the result of
logic operation can be programmed with an
IF statement.

If the RETURN statement is processed, the block
is exited. The value of the ENO tag is transferred to
the enable output ENO when the block is exited.

Return tag

Return tag

If the RET coil or box with signal state “1” is
processed, the block is left. The signal state of
the return tag is mapped when leaving the block
in the enabling output ENO of the call box.

http://pnap.ir/siemens-s71200-price-list/

12.3 Calling of code blocks

413

Block end with SCL

With RETURN the currently processed block is exited without conditions. A condi-
tional block end can be programmed using the IF statement. If an organization
block is terminated, processing is continued in the CPU's operating system.

RETURN transfers the signal state of the ENO tag to the enable output of the exited
block. If an organization block is exited via RETURN, the signal state of ENO has no
meaning. Programming of RETURN at the end of the block is optional.

12.3 Calling of code blocks

12.3.1 Introduction

If a logic block is to be edited, it must be “called up”. With LAD and FBD, the block
call consists of the call box which contains the name (symbolic address) of the called
block, the enable input EN, the enable output ENO, and the parameter list. With
SCL, the block name is specified during the block call, followed by the parameter
list. The enable input EN and the enable output ENO can be inserted into the param-
eter list of a function block call.

Following processing of the call function, the CPU continues program execution in
the called block. The block is processed up to a block end function or up to its end.
The CPU then returns to the calling block and continues processing of this block
after the call function.

An organization block cannot be called; it is started by the operating system
depending on events. If an organization block is terminated, the CPU continues to
work in the operating system.

You can pass data on to the called block for processing, or accept data from the
called block. The data is transferred by the block parameters.

You can use the enable input EN to structure the block call depending on the result
of logic operation. The called block can report faulty processing to the calling block
via the enable output ENO. Further details can be found in Chapter 12.4 “EN/ENO
mechanism” on page 417. The block properties, the design of the block interface,
and the transfer of block parameters are described in Chapters 5.3 “Programming
blocks” on page 125 and 5.4 “Calling blocks” on page 137.

12.3.2 Calling a function FC

Calling a function (FC) is depicted in LAD and FBD with the call box. In SCL, it is
depicted with the block name and the parameter list (Fig. 12.6).

The prerequisite for calling a function (FC) is that the function must already be in
the user program. You program the call by dragging the block from the project
tree under Program blocks to the opened block. To call a function located in a

12 Program flow control

414

library, open the library in the task card and drag the block to the working area.
When calling functions, you must provide all of the available parameters (see
Chapter 5.4.2 “Calling a function (FC)” on page 139).

Calling a function (FC) with LAD and FBD

With the EN input you can structure the block call depending on conditions. If the
EN input leads directly to the left-hand power rail or if it is not connected, the call is
an absolute call and is always executed. If EN has a preceding logic operation, the
block call is only executed if the preceding logic operation is fulfilled.

You label the parameters of the called block with the current tags for the call, with
absolute or symbolic addressing. If an input parameter is of data type BOOL, the pa-
rameter should be preceded by

Fig. 12.6 Calling a function (FC)

FC Name

FC Name

EN

EN

name1

name1

...

...

name2

name2

...

...

RET_VAL

name3

RET_VAL

name3

...

...

ENO

ENO

Calling a function (FC)

LAD

FBD

SCL
" "FC Name (

In1 := ... ,
In2 := ... ,
Out1 => ... ,
Out2 => ...);

#Variable := FC Name (
In1 := ... ,
In2 := ... ,
Out1 => ... ,
Out2 => ...);

" "

A function (FC) has a function value (return value) with the preset name RET_VAL. This name
can be changed, however. This function value can be “deactivated” for the interface declaration if
it is occupied with the data type VOID. Any other data type “activates” the function value.

All block parameters must be supplied with actual parameters when called.

An FC block is called in LAD by an EN/ENO box.
The input and in/out parameters are present on the
left-hand side of the call box in the order of their
declaration, and the output parameters on the right-hand
side. If the function value is “activated”, it is represented
as the first output parameter"

An FC block is called in SCL by its name. This is followed
by the parameter list in parentheses. The parameters are
specified in the order of their declaration, each separated
by a comma.

If the function value is “activated”, the block call responds
like a tag with the value and the data type of the function
value. It can then be assigned to a tag, for example, or
used in an expression.

An FC block is called in FBD by an EN/ENO box.
The input and in/out parameters are present on the
left-hand side of the call box in the order of their
declaration, and the output parameters on the right-hand
side. If the function value is “activated”, it is represented
as the first output parameter"

http://pnap.ir/siemens-s71200-price-list/

12.3 Calling of code blocks

415

b A contact or a current path (LAD) or

b A binary tag or binary logic operation (FBD).

A Boolean output parameter cannot be connected further.

The calling of functions with a function value is identical to the calling of functions
without a function value. The function value (with the declaration RETURN and a
data type not equal to VOID) is depicted as the first output parameter.

Calling a function (FC) with SCL

You call a function (FC) without a function value with your name. This is followed
by the parameter list in round brackets. You must assign values to all block param-
eters; the sequence is defined by the declaration.

The call of a function (FC) with function value must be handled in the SCL program
like a tag which has the data type of the function value. The call function is then
present in the assignment or expression instead of the function value. The call func-
tion is comprised of the block name, followed by the parameter list in parentheses.

With a function (FC) you cannot use the implicitly defined enable input EN. You can
program an FC call depending on a condition without a function value using the IF
statement. If you wish to use the implicitly defined enable output ENO, add it to the
parameter list as the last parameter.

12.3.3 Calling a function block (FB)

Calling a function block (FB) is depicted in LAD and FBD with the call box. In SCL, it
is depicted with the instance name and the parameter list (Fig. 12.7).

The prerequisite for calling a function block is that the function block must
already be in the user program. You program the call by dragging the block in the
project tree from the Program blocks folder to the opened block. To call a function
block located in a library, open the library in the task card and drag the block to
the working area. Select the type of call in the following dialog.

In the Call options dialog, click on the Single instance button if the data of the func-
tion block is to be saved in a separate data block (in the instance data block). If you
call an additional function block in a function block, you can save the data of the
called function block in the instance data block of the calling function block. In this
case, select the Multi-instance button in the Call options dialog.

When calling a function block you only have to supply the block parameters that are
saved as pointers. The block parameters that are not supplied retain their current
value (see Chapter 5.4.3 “Calling a function block (FB)” on page 140).

Calling a function block with LAD and FBD

With the EN input you can structure the block call depending on conditions. If the
EN input leads directly to the left-hand power rail or if it is not connected, the call is

12 Program flow control

416

an absolute call and is always executed. If EN has a preceding logic operation, the
block call is only executed if the preceding logic operation is fulfilled.

You can label the parameters of the called block with the current tags for the call,
absolutely or symbolically addressed. If an input parameter has data type BOOL,
place the following in front of this parameter:

b a contact or a current path (LAD) or

b a binary tag or a binary logic operation (FBD).

A Boolean output parameter cannot be further linked.

Fig. 12.7 Calling a function block

Calling a function block (FB)

Instance data

Instance data

EN

EN

name1

name1

...

...

name2

name2

...

...

name3

name3

...

...

ENO

ENO

LAD

FBD

SCL

"DB Name"(
In1 := ... ,
In2 := ... ,
Out1 => ... ,
Out2 => ...);

#Instance Name(
In1 := ... ,
In2 := ... ,
Out1 => ... ,
Out2 => ...);

FB Name

FB Name

When called as a single instance, the name of the instance
data block is specified. When called as a local instance,
the instance name is specified.

The list of block parameters follows in parentheses, in
the order of their declaration and separated by a comma.
Only the block parameters which are supplied need be listed.

The name of the call instance is shown above the call box.
In the case of a single instance, this is the instance data block.
In the case of a local instance, this is the instance name in
 the static local data of the calling function block.

An FB block is called in LAD by an EN/ENO box. The input
and in/out parameters are present on the left-hand side of
the call box and the output parameters on the right side, in
the order of their declaration in each case.

An FB block is called in FBD by an EN/ENO box. The input
and in/out parameters are present on the left-hand side of
the call box and the output parameters on the right side, in
the order of their declaration in each case.

The name of the call instance is shown above the call box.
In the case of a single instance, this is the instance data block.
In the case of a local instance, this is the instance name in
 the static local data of the calling function block.

A function block FB stands for a program section (a block) with its own data which is present
in an instance data block. If the instance data is in a separate data block, one refers to a “single
instance”. If the instance data is in the instance data block of the calling function block (if this is
a “multi-instance”), one refers to a “local instance”.

In/out parameters with structured data type and block parameter with parameter type have to be
supplied. Supplying of the other block parameters is optional.

http://pnap.ir/siemens-s71200-price-list/

12.4 EN/ENO mechanism

417

Calling a function block with SCL

When calling a function block, you can use the implicitly defined enable input EN to
make the call dependent on a condition. If you want to use the enable input EN, add
it to the parameter list as the first parameter.

If you wish to use the implicitly defined enable output ENO, add it to the parameter
list as the last parameter.

12.4 EN/ENO mechanism

Block calls and functions (instructions) in which a runtime error can occur have an
enable input EN and an enable output ENO. If the enable input has signal state “1”
(TRUE), the block or function is not processed.

The signal state of the enable output ENO can be controlled for a user block by the
user program. For a function (statement), the ENO output has signal state “1”
(TRUE) if processing is problem-free. If an error occurs during processing,
e.g. number range overflow during an arithmetic function, the ENO output is set to
signal state “0” (FALSE).

The the EN input has signal state “0” (FALSE), with LAD and FBD the ENO output is
also set to “0” (FALSE); with SCL the ENO output is set to “1” (TRUE). Table 12.1
shows how the ENO output is controlled.

The enable input EN and the enable output ENO are not block parameters, but state-
ment sequences which the program editor generates automatically before and after
all calls depending on EN and ENO. With an SCL block, it is necessary to activate the
attribute Automatically set ENO to ensure that the necessary statement sequences
are generated during compilation.

Table 12.1 Schematic diagram for setting of enable output ENO

Is EN connected?

YES NO

Is EN = “1”? Block/function being processed

YES NO

Block/function being processed Block/function not
being processed

Has an error occurred? Has an error occurred?

YES NO YES NO

ENO is set to “0” ENO is set to “1” LAD and FBD: ENO is
set to “0”
SCL: ENO is set to “1”

ENO is set to “0” ENO is set to “1”

12 Program flow control

418

Functions with an EN/ENO mechanism in the Statements folder in the program ele-
ments catalog are the mathematical functions, moves, converters, digital logic
operations, move and rotate, all functions in the Expanded statements folder and
all block calls.

12.4.1 EN/ENO mechanism with LAD and FBD

A contact or a binary tag or a preceding logic operation upstream of the enable
input EN controls the calling of the EN/ENO box. If the enable input EN is connected
to the left busbar or remains unconnected, the EN/ENO box is always processed.

You can use the properties of EN and ENO to connect several boxes into a sequence,
where the enable output ENO leads to the enable input EN of the next box
(Fig. 12.8). Thus, for example, the entire sequence can then be “deactivated” (no
box is processed, if the binary tag “Enable” in the example has signal state “0”) or
the rest of the sequence is no longer processed if a box reports an error.

12.4.2 EN/ENO mechanism with SCL

In SCL, the enable input EN and the enable output ENO are not included in the tem-
plate of the function call or block call during programming. If you want to use the
enable input EN when calling a function block, add it to the parameter list as the
first parameter. If you would like to use the enable output ENO during a block call,
insert it as the last parameter in the parameter list. Example of calling a function
block as local instance:

#Instance_data(EN := #Enable,
 IN1 := ... ,
 IN2 := ... ,
 OUT => ... ,
 ENO => #Error);
If an error has occurred during block processing in the example, the tag #Error is
set to FALSE; otherwise, it is set to TRUE. If the tag #Enable has the value FALSE in
the example, the block call is not carried out. The tag #Error is set to TRUE in this
case.

Fig. 12.8 Series connection of ENO and EN

12.4 EN/ENO mechanism

419

12.4.3 EN/ENO for user blocks

Controlling the ENO output in LAD and FBD

With the block end function RET, you can influence the signal state of the enable
output ENO: The release output ENO takes over the signal state of the return tag. If,
for example, you want to set the enable output ENO to signal state “0” due to an
error found in the program, exit the block with RET and FALSE as the return value.

An example for this can be found in the Chapters 7.6 “Functions for program flow
control (LAD)” on page 241 and 8.6 “Functions for program flow control (FBD)” on
page 279.

Controlling the ENO output in SCL

When the block is exited, the enable output ENO assumes the value of the block-
local tags ENO. A prerequisite is the activated attribute Automatically set ENO. ENO
has the value TRUE at the start of the block. An erroneously carried out statement,
a numerical range overflow in an arithmetic function, for example, sets ENO to
FALSE. If the block is now exited, the enable output ENO assumes the value FALSE.

The use of the block-local tags ENO is described in detail in Chapter 9.6.1 “Working
with the ENO tag” on page 305.

13 Online operation, diagnostics and debugging

420

13 Online operation, diagnostics and
debugging

One refers to online operation or online mode if a programming device is con-
nected to a PLC or HMI station and an online connection has been established. An
online connection is required in order to upload the user program to the CPU, to
test it in the CPU during runtime, or to find hardware faults using diagnostic func-
tions.

The connection between a programming device and a PLC station is made over
Industrial Ethernet. The mechanical connection (networking) and the logical con-
nection (definition of the transmission protocols) are not configured. Only the net-
work addresses – the addresses of the PROFINET interfaces of the two devices –
must be matched to each other.

In online mode, STEP 7 Basic changes the display of the user interface: the title bars
of the windows are displayed in orange. In the project tree, the objects of the sta-
tions which are connected online are assigned symbols which indicate their operat-
ing or diagnostics state.

You can use the online and diagnostics tools, for example, to control the operating
mode of the CPU, to set the time on the CPU, and fetch the diagnostic information,
e.g. read the diagnostics buffer. The online and diagnostics tools support you in
troubleshooting during commissioning.

The user program which you have created offline can be transferred to the CPU in
online mode. When carried out for the first time, all configuration data and the
complete user program are transferred, subsequently only the modified configura-
tion data and program blocks. The transfer is always possible in the STOP operating
mode of the CPU. If certain prerequisites are met, it can also take place in the RUN
operating mode.

You can compare the online and offline versions of a block. Modifications to a block
are always carried out in the offline version which you then transfer to the CPU in
the STOP mode.

Two functions are available for testing the user program: the program status and
the watch tables. You use the program status to monitor the program execution
directly on the control functions. The watch tables contain tags whose values you
can read and modify (control) during runtime or also set permanently (force).

The program editor also allows you to display the user program in a CPU without a
corresponding offline project being present. If you then wish to edit the blocks, you
must first upload the online project into the offline data management.

13.1 Connecting a programming device to the PLC station

421

13.1 Connecting a programming device
to the PLC station

The programming device can only exchange data with a PLC station if it is
addressed in the same subnet and has a node address which is different from that
of the PLC station. The IP addresses of the programming device and PLC station
must therefore be identical in the part whose bits are occupied by “1” in the subnet
mask, and different in the remaining part. You can find information on the struc-
ture of the IP address and the subnet mask in Section “IP address and subnet mask”
on page 73.

If the programming device already has an address different from that of the PLC
station, STEP 7 Basic sets a “temporary” IP address on the programming device.
This temporary IP address is deleted again when Windows is shut down.

13.1.1 IP addresses of the programming device

Determining and setting network addresses using Windows tools

You can edit the network addresses of the programming device using the Network
connections tool (Windows XP) or Network and enable center (Windows 7) in the
Windows Control Panel. Open the Control Panel – for example from the Windows
desktop via Start > Control Panel – and start the tool. Then double-click to select the
LAN or WLAN connection that is used.

In the displayed status window Status of …, click on the Details button located in the
General or Network support tab. The currently active IP address and the subnet
mask are displayed, for example. SIMATIC S7 supports the Internet protocol Version
4 with the 4-byte long IPv4 address.

The connection status is displayed in the General tab. Click here on the Properties
button. In the Properties of … window, select the Internet Protocol (TCP/IP) entry in
the This connection uses the following items field, and then click on the Properties
button (Fig. 13.1).

In the following dialog Internet Protocol (TCP/IP) Properties you can set the IP ad-
dress and subnet mask by selecting the Use the following IP address: option.

If you want to enter an additional IP address, for example for the SIMATIC project,
click on the Advanced button. In the advanced settings, enter an additional IP
address and the subnet mask in the IP Settings tab after clicking on the Add button.

Setting of access point

When installing STEP 7 Basic, the Set PG/PC interface tool is created in the Windows
Control Panel. This allows the user to check the access point to the Ethernet net-
work and to reset it if necessary.

Open the Set PG/PC interface tool, for example from the Windows desktop using Start
> Control Panel. The Access path tab should show S7ONLINE (STEP 7) in the Access

13 Online operation, diagnostics and debugging

422

point of application box. Select the LAN or WLAN interface module used under Inter-
face Parameter Assignment Used and close the tool.

Determining IP addresses with STEP 7 Basic

If you wish to find out the IP address of the programming device (to be more pre-
cise: the IP address of the interface module used) or, for example, wish to delete the
temporary IP address, proceed as follows:

Connect the interface module of the programming device to Ethernet, for example
to a CPU. Switch on the CPU to activate the interface. The CPU can be in any operating
mode.

Start STEP 7 and change to the Project view. The virtual and physical online inter-
faces of the programming device are listed in the project tree under Online access.
Select the interface used and then the Properties command from the shortcut
menu. The MAC address, the fixed IP address, and the subnet mask are displayed
in the properties dialog in the Configuration section under Industrial Ethernet. All
project-specific IP addresses are listed under IE-PG access. You can delete all of
these addresses using the Delete project-specific IP addresses button.

13.1.2 Connecting the programming device to the PLC station

Connect the LAN connection of the programming device to the PROFINET interface
of the CPU module. You can use a standard or crossover cable since the CPU module
is suitable for both types. Make sure that no memory card is inserted in the
CPU module, and then switch on the power supply to the CPU module.

Fig. 13.1 Setting IP addresses with the Windows Control Panel

13.1 Connecting a programming device to the PLC station

423

Following the restart, the CPU module – if it has been obtained directly from the fac-
tory or has been reset to the factory settings – is at STOP, and the RUN/STOP LED
lights up yellow.

Searching for accessible devices

Start STEP 7 Basic, select the Online & Diagnostics portal in the portal view, and then
Accessible devices. If the programming device has several interfaces, select the in-
terface (module) to which the CPU module is connected in the Accessible devices
window.

A station which has been found is listed in the table with its IP address or – if it does
not have an IP address – with its MAC address. At the same time, the graphic is pro-
vided with an orange background (Fig. 13.2).

Select the line with the station. You can then click the Flash LED button in order to
briefly flash the status LED on the front panel of the CPU. To process the selected
station further in the project view, click on the Show button.

Fig. 13.2 Dialog window Accessible devices

13 Online operation, diagnostics and debugging

424

Setting a temporary IP address on the programming device

If the network settings of the programming device do not agree with those of the
CPU module, STEP 7 Basic allows you to set an appropriate, project-specific IP ad-
dress on the programming device. This IP address is only present temporarily until
you switch off the programming device or delete the address. Answer the corre-
sponding dialogs with Yes or OK in order to assign an IP address. The assigned
IP address is displayed in the response dialog.

STEP 7 Basic now shows the found CPU in the project view, and this is positioned
with its IP or MAC address in the Online access group under the used interface mod-
ule as a new group in the project tree.

13.1.3 Assigning an IP address to the CPU module

If a CPU module is displayed with its MAC address, you can assign an IP address to
it: select the PLC station and then the Online & Diagnostics command from the
shortcut menu. Select the Assign IP address entry in the diagnostics window in the
Functions section. Enter the desired IP address and subnet mask, and click on the
Assign IP address button. The result of the action is signaled in the Inspector
window in the Info tab.

13.1.4 Switching on the online mode

If you select the PLC station present under Online access in the project tree and then
Online & Diagnostics from the shortcut menu, the online tools are displayed with
the CPU operator panel and the diagnostics window. Further details can be found
in Section 13.3 “Hardware diagnostics” on page 436.

If the project matching the online PLC station is present, open it and select the
PLC station in the project tree. Select Go online from the shortcut menu, or activate
the Go online symbol in the main menu. The status of the PLC station is displayed
in the Inspector window in the Diagnostics tab. Diagnostics symbols in the project
tree signal agreement between the online and offline versions of the blocks and
PLC tags (see Section 13.3.6 “Further diagnostics information via the programming
device” on page 440).

Alternatively you can switch to online mode by selecting the Online & Diagnostics
command in the shortcut menu with the PLC station selected. The diagnostics win-
dow is then opened. Now click on the Go online button in the Online access section.

Further procedure

b How you can use the diagnostics and online tools, for example in order to start
and stop the CPU or to reset to the default settings, can be found in Section 13.3
“Hardware diagnostics” on page 436.

b The following Chapter 13.2 “Transferring project data” describes how you can
upload a user program to the PLC station and edit the user program online.

13.2 Transferring project data

425

b Chapter 13.4 “Testing the user program” on page 441 describes how you can test
a user program.

b Chapter 13.2.7 “Editing online project without offline project” on page 433 de-
scribes how you can access the online project data of the CPU without the user
program.

13.2 Transferring project data

You have configured the hardware and completed and compiled the user program.
Downloading to the PLC station can be carried out in the following ways:

b Transfer via an online connection

b Transfer using a memory card as a transfer card

b Transfer using a memory card as a program card

The project data can only be downloaded when the CPU is in the STOP mode.

13.2.1 Loading project data for the first time

A CPU module without project data – for example if it has been obtained directly
from the factory – is in the STOP mode following connection of the power supply.
In order to download the project data, connect the programming device to the
CPU module, switch it on, and open the project.

Select the PLC station in the project tree and then the Download to the device > All
command from the shortcut menu. When loading for the first time, the dialog win-
dow Advanced loading shows the IP address of the PLC station in the Configured
access nodes of … table. If the programming device has several interface modules,
select the interface at which the PLC station is connected from the PG/PC interface
drop-down list.

The PLC station does not have an IP address, or a different one

If the configured IP address does not agree with the IP address set in the CPU, STEP
7 cannot find the device matching the configuration. This is indicated by an error
message in the Extended download to device dialog window. In this window, activate
the Show all accessible devices check box. Browsing is then started again.

The found devices with their IP address are displayed in the Accessible devices in
target subnet table. The MAC address is displayed if a device does not have an
IP address. Select the desired PLC station in this table, and click on the Load button.

If the network settings of the programming device do not match the configured IP
address, the dialog window Assign IP address is displayed. STEP 7 then inquires
whether the programming device is to be assigned a further temporary, project-
specific IP address. Acknowledge the inquiry with Yes or with OK.

13 Online operation, diagnostics and debugging

426

The project data is compiled prior to downloading

The project data is compiled again prior to downloading. Only consistent project
data which has been compiled without errors can be downloaded. The compilation
process can be observed in the Load preview dialog window.

Following error-free compilation, the Check before loading message is displayed in
the Load preview dialog window. Via the dropdown menu, select the desired action
from the Action column and/or activate the proposed actions using the checkbox.
You can continue with loading by clicking on the Load button (Fig. 13.3).

Starting the CPU following downloading

The results of loading are displayed in the dialog window Load results. Following
loading without errors, you can start the CPU with the new user program.

Caution: Make sure when starting the CPU on the controlled machine – with a program
which could possibly be faulty – cannot cause any damage to persons or property and
that no dangerous states can result!

If the CPU was in RUN mode prior to the downloading process, the Start all check
box in the Action column is activated. If it was in STOP mode, activate the check box
in order to start the CPU. Click on the Finish button.

With the Start all check box activated, the CPU is started when the downloading pro-
cess has been completed. If no errors occur, the CPU is then in the RUN mode.
The RUN/STOP LED lights up green.

Fig. 13.3 Load preview dialog window

13.2 Transferring project data

427

Switching on and testing online operation

Following loading of the project data, you can activate online mode by means of the
Go online symbol in the main menu. The title bar of the active window has an orange
background. You can open the diagnostics window using the Online & Diagnostics
command from the shortcut menu of the selected PLC station. You can then use the
online tools, for example the CPU operator panel.

If you open a block in the project tree, you can use the Monitoring on/off symbol in
the toolbar of the working window to switch on the program status and to debug
the program. The possibilities offered by STEP 7 for program debugging are de-
scribed in Section 13.4 “Testing the user program” on page 441.

13.2.2 Delta downloading of project data

When reloading project data, only the changes compared to the online project data
are loaded. It is possible to specify for the software (in the user program) whether
only the changes are loaded or everything.

You determine with the download command which project data is to be download-
ed. Select the object to be downloaded in the project tree and then the Download to
device > … command from the shortcut menu. You can:

b Select the All, Hardware configuration, Software or Software (all blocks)
commands for the selected PLC station

b Select the Software or Software (all blocks) commands for the selected
Program blocks folder

b Select the Software command for one or more selected blocks

The result of loading is shown in the inspector window under Info > General.

The CPU is in RUN mode

The configuration data can only be download in the STOP mode. If you select Down-
load to device > … from the shortcut menu, you will be asked whether the selected
PLC station is to be set to STOP. Loading is canceled using Cancel, the CPU is set to
STOP using OK, and the loading process is continued with the compilation of the
project data.

The project data is partially up-to-date

If only the configuration data has been modified, for example, the Load preview dia-
log window shows following compilation of the project data that the unmodified
project data is not loaded, e.g. The software is not downloaded because the online sta-
tus is up-to-date. Select the desired actions and continue loading by clicking on the
Load button.

13 Online operation, diagnostics and debugging

428

Starting the CPU

If the CPU was in RUN mode prior to the downloading process, the Load results dia-
log window then inquires whether the CPU is to be started (Start modules after
downloading to device message with Start all check box activated).

Caution: Make sure when starting the CPU on the controlled machine – with a program
which could possibly be faulty – cannot cause any damage to persons or property and
that no dangerous states can result!

Continue by clicking on the Finish button. The downloading process has been com-
pleted when the RUN/STOP LED lights up permanently following short flashing.

Downloading a non-consistent program following faulty compilation

If an error is detected when compiling prior to downloading, this is signaled in the
Load preview dialog window. The component at which the error has occurred is in-
dicated in the Target column under Compile (click the triangle on the left of this).
It is only possible to continue the downloading process when the error has been
eliminated.

13.2.3 Error message following downloading

If the CPU does not start following loading – the RUN/STOP LED remains yellow – or
if the ERROR LED flashes, the diagnostics buffer can provide information on the
cause. Remaining in the STOP mode or returning to it could be the result of, for
example, a faulty I/O access in the user program. If the CPU is in RUN and the ERROR
LED is flashing, there may be a difference between configured and actual hardware,
for example.

Section 13.3.3 “Diagnostics buffer” on page 437 describes how the diagnostics buf-
fer can support you during troubleshooting.

13.2.4 Working with the memory card

A SIMATIC Memory Card for a CPU 1200 is an SD memory card (secure digital mem-
ory card) preformatted by Siemens. If you wish to delete the contents of the mem-
ory card, you must only delete files or folders. Formatting the memory card makes
it unusable in a CPU 1200. Please make sure that the write protection – the small
slide switch on the side of the card – is switched off if it is used in the CPU.

If you insert or remove a memory card when the CPU is in the RUN mode, the mode
immediately changes to STOP. Caution: Make sure that stopping of the CPU cannot
cause any damage to persons or property and that no dangerous states can result!

Setting the type of card

You can use the memory card as a transfer card or as a program card. You can use
the transfer card as a replacement for the online connection to download a project
to the CPU; the program card replaces the internal load memory.

13.2 Transferring project data

429

To set the type of card, insert the memory card into the programming device's card
reader. In the project tree, open the SIMATIC Card Reader folder and the subordinate
folders down to the SD card (to the drive letter). Select the SD card and click on the
Properties command in the shortcut menu. In the dialog window that is then dis-
played, select the Program or Transfer entry from the drop-down list in the Card type
field.

Transferring project data to the memory card

Once the memory card has been set as a transfer or program card, copy the project
data of the PLC station onto the memory card, e.g. using Copy with the PLC station
selected and Insert from the shortcut menu with the SD subsequently selected, or
by dragging the PLC station to the memory card with the mouse button pressed.
The project will be compiled. Following error-free compilation, the Load preview
window is displayed; continue the downloading process with the Continue check
box activated by clicking on the Load button. Click the Complete button to termi-
nate the downloading process.

Using the memory card as a transfer card

Insert the memory card into the CPU module. If the CPU was in the RUN mode, it
changes to STOP. The MAINT LED flashes as an indication that the memory card has
to be evaluated. The memory card is evaluated following a CPU restart, e.g. when
switching the power supply off and on again.

Following the restart, the project data is transferred from the memory card to the
internal load memory. The flashing MAINT LED signals the end of the transfer.
You must remove the memory card before starting the CPU again.

You can start the CPU by switching the power supply off and on again, for example.
The CPU starts with the set operating mode.

If the memory card is an empty transfer card, the internal load memory of the CPU
is deleted during the transfer. A password-protected user program can be deleted
in this manner if the password is unknown.

Using the memory card as a program card

Insert the memory card into the CPU module. If the CPU was in the RUN mode, it
changes to STOP. The MAINT LED flashes as an indication that the memory card has
to be evaluated. The memory card is evaluated following a CPU restart, e.g. when
switching the power supply off and on again.

The contents of the internal load memory are deleted following the CPU restart, and
the executable data transferred from the memory card to the work memory.
The CPU has the set operating mode following the restart.

The memory card must remain in the CPU module since it now contains the load
memory. If the memory card is removed during runtime, the CPU goes to STOP and
the ERROR LED flashes.

13 Online operation, diagnostics and debugging

430

If the memory card is an empty program card, the contents of the internal load
memory of the CPU are transferred to the memory card following a CPU restart. Fol-
lowing a further CPU restart, the memory card is then used as an external load
memory.

Fig. 13.4 Use of the memory card as transfer and program card

Project data is present on the transfer card.

Project data is present on the program card.

The transfer card is empty.

The program card is empty.

Use as transfer card

Use as program card

The project data is transferred to
the memory card.

The project data is transferred to
the memory card.

The data on the memory card is deleted.

The data on the memory card is deleted.

The memory card is inserted into the CPU. When
switching on, the CPU imports the data into the
internal load memory. The memory card can
then be removed.

The memory card is inserted into the CPU. When
switching on, the CPU replaces the internal load
memory by the memory card. The memory card
must remain inserted.

The memory card is inserted into the CPU. When
switching on, the CPU deletes the data in the
internal load memory (application: a password-
protected program is to be deleted).

The memory card is inserted into the CPU.
When switching on, the CPU copies the data from
the internal load memory into the memory card.
The memory card must remain inserted
(as load memory).

Use of the memory card

S

S

S

S

CPU 1200

CPU 1200

CPU 1200

CPU 1200

s s

s s

ss

s s

http://pnap.ir/siemens-s71200-price-list/

13.2 Transferring project data

431

13.2.5 Processing blocks offline/online

Prerequisites: you have transferred the project data from the programming device
to the CPU, the project is open, and the CPU connected online.

The program editor displays the user interface either in offline or online mode.
In offline mode, the project data in the programming device is displayed; in online
mode, the data in the CPU. You can swap between the two modes using the Go online
and Go offline symbols in the toolbar of the project view. How to switch to online
mode for the first time is described in Section 13.1 “Connecting a programming de-
vice to the PLC station” on page 421.

Changing the CPU's configuration data

It is only possible to change the configuration data in offline mode. Switch to offline
mode, change the configuration data offline, and transfer it to the CPU. If you wish
to transfer only the configuration data, select the PLC station in the project tree and
then the Download to device > Hardware configuration command from the shortcut
menu. The CPU is switched to STOP during downloading.

Changing a block in the CPU

It is only possible to change program blocks in offline mode. If you wish to change
the program of a block in the CPU during program debugging, you must switch to
offline mode, change the block in the offline data management, and then transfer
it to the CPU. The switch to online mode again and continue with debugging.

Online mode is switched on; the title bar of the active window has an orange back-
ground, the title bars of the inactive windows are underlined in orange. Blocks
which are the same offline and online are identified by a green filled circle in the
project tree. A block is open, and you wish to change this block's program.

If you wish to carry out the changes on the online version of the block, the color of
the title bar of the working window is changed, i.e. the program editor has automat-
ically switched to the offline block which you can then change. A circle divided in
two colors in the project tree indicates that there is a difference between the offline
and online versions of the block.

Following completion of the change, transfer the modified block to the CPU: select
the block and then the Download to device > Software command from the shortcut
menu. Follow the displayed dialog windows. The CPU must be set to STOP during
the downloading process, and subsequently restarted.

Adding a block online

You can generate a new block in the offline data management using the Add new
block tool in the project tree, even if online mode is switched on. Program the block
offline, and program the block call as well – if the new block is not an organization
block – and then transfer both blocks to the CPU.

13 Online operation, diagnostics and debugging

432

Deleting a block online

You delete a block by selecting it and then the Delete command from the shortcut
menu. If the online mode is switched on and you wish to delete a block which is
present both online and offline, the program editor inquires which of the blocks is
to be deleted: the online block (Delete from device), the offline block (Delete from
project), or both.

Before deleting a block in the CPU, you should delete its call, i.e. remove the call of
the block to be deleted from the calling online block, otherwise the error The called
block does not exist is signaled during runtime.

13.2.6 Comparing blocks offline/online

The compare editor enables you to compare the offline and online versions of
blocks. The comparison is possible in the STOP and RUN modes.

To start the compare editor, select the object to be compared in the project tree,
e.g. the PLC station, the Program blocks folder, or individual blocks. Select the Com-
pare > Offline/online command from the shortcut menu, or the command Tools >
Compare > Offline/online in the main menu.

The comparison editor displays the compared objects and the comparison status in
the working window. As standard, objects which have different offline and online
versions are displayed (Fig. 13.5). The filter icon in the toolbar can be used to switch
to a display of all objects. In addition, the compared objects are also identified by a
comparison symbol in the project tree.

A green filled circle indicates that the offline and online versions are identical.
A blue/orange circle indicates that the object is different in the offline and online
versions. If one half circle is not filled, the corresponding version is missing (left
side or blue represents offline, right side or orange represents online). An excla-
mation mark in an orange circle indicates an object with differences in the named
folder.

Fig. 13.5 Example of an offline/online comparison with different objects

13.2 Transferring project data

433

In the Action column, you can select the desired action from a dropdown menu,
such as Download to device, if the offline version differs from the online version.
Clicking on the Execute actions icon in the toolbar starts the set actions.

You can start a detailed comparison - providing the object allows it - if you select an
object with different versions and select Start detailed comparison, either in the
shortcut menu or via the icon. In a successful detailed comparison, both versions
are opened at the point with the first difference and the detected difference is visi-
ble in the inspection window in the Comparison result tab (Fig. 13.6).

Following elimination of the differences and execution of the appropriate down-
loading action, you can start the comparison editor again using the Refresh the view
symbol.

Note that only one offline/offline comparison or one offline/online comparison can
be carried out at a time.

13.2.7 Editing online project without offline project

You can access the project data in a CPU using the programming device even with-
out offline project data.

Connect the programming device to the CPU, switch on the module and select the
portal Online & Diagnostics and then Accessible nodes in the portal view. Set the
PG/PC interface module if applicable. In the Accessible devices in target subnet list,
select the PLC station and click on the Show button. If the programming device does
not possess the matching network parameters, a dialog window is displayed to
allow you to set these temporarily. Acknowledge with YES or OK.

Fig. 13.6 Example of a detailed comparison

13 Online operation, diagnostics and debugging

434

In the project view, the PLC station is displayed in the project tree of the interface
module used in the Online accesses folder. Select the PLC station and then the
Online & diagnostics editor from the shortcut menu. In online mode, you can select
the mode using the CPU operator panel, for example, or read out the diagnostics
buffer in the diagnostic functions.

The online blocks are present in the Program blocks folder. When you open the fold-
er, STEP 7 downloads the blocks into it. A block is opened by double-clicking, and
the program in the block is displayed.

If you wish to edit or debug an online block, you must create an offline project and
transfer the online blocks to the project (see next section). Only blocks which exist
offline can be newly created, modified or debugged.

13.2.8 Uploading project data from the CPU

In order to upload online project data, an offline project must be present in the pro-
gramming device. If the offline project matching the online project is not available,
an “empty” offline project must be created into which the online data can be loaded.

To create an “empty” project: select the Project > New command in the main menu,
and assign a name to the project. Double-click in the project tree on Add new device
and select the non-specified CPU 1200 6ES7 2XX-XXXX-XXXX from the SIMATIC PLC
catalog in the Add new device dialog window. Enter a name for the “empty” PLC sta-
tion.

If you have not already done so, connect the programming device to the CPU mod-
ule whose project data you wish to upload, and switch the CPU module on.

Hardware detection

When the unspecified CPU is inserted, the hardware configuration provides a link
for determining the configuration of the connected device. If this is not already
done, connect the programming device to the CPU that has project data you want
to upload and switch on the CPU.

Click on the link for determining the configuration or select the “empty” PLC sta-
tion in the project tree and select the command Online > Hardware detection from
the main menu. The devices that are found are listed in the Hardware detection dia-
log. Select the PLC station in the table and click on the Detect button. If the program-
ming device needs a project-specific IP address, STEP 7 allows you to set up a corre-
sponding address. Acknowledge the inquiry with Yes or OK. The “empty” PLC sta-
tion is now filled with configuration data, which correspond to data of the con-
nected CPU.

Now copy the online blocks into the offline project. To do this, open the desired PLC
station in the project tree under Online accesses and the relevant interface module,
select the folder Program blocks, and select Copy from the shortcut menu. In the
project tree, go to the offline station, select the Program blocks folder, and then
select the Paste command from the shortcut menu.

13.2 Transferring project data

435

In the window Preview for loading from device you are notified which offline objects
are replaced by the online objects, e.g. including the PLC tag table. Check the Con-
tinue checkbox and click on the Load from device button.

What is uploaded?

During the hardware detection, there can be differences in the parameterization of
the modules between the offline and online configuration, for example in the
parameterization of the system memory and cycle memory. If you want the same
configuration online and offline, you must adapt the uploaded configuration data
and then upload it to the CPU.

In addition to the configuration data, the load memory of the CPU also contains the
online PLC tag table and the compiled user program. The PLC tag table is newly cre-
ated during the upload; it also contains the names of the blocks. The names of the
block-local tags are present in the block's program.

The values of the data tags are the start values which are fetched from the load
memory when uploading. The actual values from the work memory are not consid-
ered (Fig. 13.7).

Fig. 13.7 Data tags when loading to and from the PLC station

Start value Start value

Start value Start value

Actual value

Default value Default value
Offline data management Offline data management

Programming device Programming device

CPU module CPU module

Load memory Load memory

Work memory

The default value is
used as the start value
if a special start value
is not programmed.

The default value is
the standard value of
a data type.

When downloading into the CPU,
the start value from the offline
data management is transferred
to the load memory.

When downloading from the CPU,
the start value from the load
memory is transferred to the
offline data management.

When uploading from the CPU
into the programming device,
the actual value from the
work memory is not considered.

The data block with the
start values is imported
into the work memory.

Data blocks in offline and online data management

The start value becomes
the actual value in the
work memory. The actual
value is the value changed
by the user program.

http://pnap.ir/siemens-s71200-price-list/

13 Online operation, diagnostics and debugging

436

You have access to the actual values in the work memory

b by directly monitoring the actual values (Chapter 13.4.5 “Monitoring of data
tags” on page 446),

b with a watch table (13.4.6 “Testing with watch tables” on page 447) and

b via a program with WRIT_DBL (copying a data block with the actual values into
the load memory, where the actual values then become start values).

13.3 Hardware diagnostics

The hardware diagnostics detects and signals module faults, e.g. failure of load
voltage or open-circuit with signal modules.

The modules with diagnostics capability distinguish between parameterizable and
non-parameterizable diagnostic events. With the parameterizable diagnostics
events, a message is only output if you enable the diagnostics in the parameter set-
tings. The non-parameterizable diagnostic events are always signaled irrespective
of the diagnostics enable.

With a diagnostics event to be signaled,

b the ERROR LED lights up on the CPU module

b the diagnostics event is sent to the CPU's operating system, and

b a diagnostics interrupt is triggered if you have enabled it in the parameter
settings (in the default setting, the diagnostics interrupts are disabled).

All diagnostic events signaled to the CPU's operating system are entered in a diag-
nostics buffer in the order in which they occurred with date and time (see Chapter
13.3.3 “Diagnostics buffer” on page 437). In addition to the diagnostics buffer,
which saves the events in chronological order, the programming device offers com-
prehensive information functions which display the current module states.

13.3.1 Status displays on the modules

The status displays on the modules signal malfunctions and help to locate the
faults.

The CPU's operating system indicates malfunctions as follows:

b The ERROR LED lights up permanently.
The CPU hardware is faulty.

b The ERROR LED flashes.
Possible causes are an internal fault in the CPU or a configuration error
(the configured hardware configuration does not agree with the actual
hardware configuration).

b The RUN/STOP LED lights up yellow.
The CPU does not enter RUN mode when switched on or goes to the STOP
mode during RUN mode. Possible causes: Manual change in mode through
the programming device, set startup type (“Startup – STOP”), STP function

13.3 Hardware diagnostics

437

in user program, system response to an execution error in the program.
The events triggering the STOP mode are entered into the diagnostics buffer
(see Chapter 13.3.3 “Diagnostics buffer” on page 437).

Each input/output channel of a digital module shows by means of a green status LED
whether voltage is present at the input or output channel. This can be used, for ex-
ample, to check the wiring from the sensor to the digital input channel or from the
digital output channel to the actuator.

An appropriately designed input/output channel of an analog module indicates by
means of a green status LED that the channel has been configured and is active. A
red LED indicates a faulty analog channel or one which is not ready. For example, a
wire-break or short-circuit could be present. If the LED flashes red, the load voltage
is missing or an I/O error is present if the diagnostics is activated.

In addition, the modules have a DIAG LED. When permanently green, this indicates
that the module is ready. If the DIAG LED flashes green, the module is not config-
ured. If the LED flashes red, a module fault exists, e.g. the load voltage is missing.

13.3.2 Diagnostics information

The diagnostics information is displayed in the work window if the programming
device is switched to online mode using the Online & Diagnostics command.
The following diagnostics information is then available:

b General: module names, module and vendor information.

b Diagnostic status: status information of the selected module, e.g. Module
exists and OK, differences between configured and existing modules.

b Cycle time: Display of preset or configured cycle (monitoring) time and
minimum cycle time and – in RUN mode – the cycle time diagram and the
shortest, current, and longest cycle (processing) times.

b Memory: display of utilization for the load, work and retentive memories.

b Diagnostics buffer: display of diagnostics buffer content.

If the CPU is still without a user program, it is in STOP mode. The cycle time and
memory utilization then indicate zero values.

13.3.3 Diagnostics buffer

The diagnostics buffer contains the faults detected by the CPU and the modules
with diagnostic capability, the triggered hardware and diagnostic interrupts, and
the changes in CPU modes in the sequence of occurrence. Up to 50 entries can be
stored. If more entries are present, the oldest entries are overwritten (ring buffer
principle). If the operating voltage is switched off and on again, the last 10 entries
(the most recent ones) are retained. The entries can only be erased by resetting the
CPU to its factory settings (Fig. 13.8).

13 Online operation, diagnostics and debugging

438

The most recent event is positioned in the first line in the diagnostics buffer. A diag-
nostics entry consists of the time stamp (date and time at which the event was
detected) and the event text. The time stamp is only meaningful if the time of the
CPU module is correct. Each event is exactly specified by an event ID. When you
select a line, the event ID is displayed on the right below the table.

Using the Help on event button, you can obtain additional information on the
selected event. If the entry refers to a block, e.g. with an access error to the I/O, it is
possible to switch to the position of the fault in the user program by using the Open
in editor button.

The Freeze display button stops display of the entries; you can then call information
for a specific event, or study the sequence of displayed events without haste. Click-
ing on the button again (label now: Cancel freeze) changes to the updated display.
Using the Save as … button you can save the contents of the diagnostics buffer as a
text file.

Fig. 13.8 Diagnostics buffer

13.3 Hardware diagnostics

439

13.3.4 Diagnostics functions

You can start the diagnostics functions in online mode using the Online & Diagnostics
command from the project tree.

b Assign IP address: Setting of the IP address, subnet mask, router address.

b Set time of day: Display of programming device and module time, setting of
real-time clock on CPU.

b Reset to factory settings: The user memory, operand areas, and diagnostics
buffer are deleted, all parameters including the time are reset to the default
settings, and the IP address is also deleted or retained depending on the pre-
selection.

b Assign name: Setting a device name for a PROFINET IO device.

13.3.5 Online tools

You can start the task card with the online tools using the Online & Diagnostics com-
mand from the project tree:

CPU operator panel:
The CPU operator panel shows the current status of the LEDs on the front panel of
the CPU. The RUN and STOP buttons can be used to set the CPU – following confir-
mation – to the corresponding state. A pressed (darker) button symbolizes the cur-
rently set state. A CPU without a user program, e.g. after being reset to the factory
settings, does not start up.

Memory reset:
The MRES button is used to trigger a memory reset. A memory reset can only be car-
ried out in the STOP mode. During the memory reset, the contents of the work
memory, retentive memory, and all operand areas are deleted. The contents of the
load memory are retained, even if present on a memory card. The contents of the
load memory relevant to execution are copied into the work memory, just like when
transferring the user program to the CPU. The diagnostics buffer, time, force jobs,
and IP address remain uninfluenced.

The existing (logical) connections to the CPU module are canceled. Following a CPU
memory reset, the programming device must be switched to online mode again
using the Online & Diagnostics or Go online command.

Cycle time:
Cycle time displays the shortest, current and longest cycle (processing) time in mil-
liseconds, also graphically.

Memory:
Memory displays the utilization of the load, work and retentive memories as bar
charts.

13 Online operation, diagnostics and debugging

440

13.3.6 Further diagnostics information via the programming device

Diagnostics symbols in the device and network views

In online mode, the device configuration editor shows, in the device or network
view, the device status with diagnostics symbols on each PLC station connected on-
line. For example, a green tick indicates that the station has not signaled any faults.
The operating mode is indicated by a colored square: green for RUN and yellow for
STOP.

Diagnostic symbols in the project tree

In online mode, diagnostics symbols are also displayed in the project tree. A green
tick is displayed after the name of the PLC station if everything is OK. A spanner sig-
nals maintenance required (green), maintenance request (yellow), or fault (red).

The result of a comparison between offline and online project data is also displayed
in the project tree. If an orange circle with an exclamation mark is displayed, the
folder contains objects which differ between the online and offline versions. Iden-
tifications for individual objects have the following meaning:

b Green filled circle: everything OK

b Blue/orange filled circle: indicates that the online and offline versions of
the object are different

b Blue/orange filled circle, right half (orange) filled: only the online object
is present

b Blue/orange filled circle, left half (blue) filled: only the offline object
is present

Device information in inspector window

The status of the devices signaled as faulty is displayed in the inspector window in
the Diagnostics > Device information tab. A device is considered to be faulty if it is
inaccessible when establishing the online connection, if it signals a fault or if it is
not in RUN mode. (Fig. 13.9). Via the link in the Details column you can access the
Go online dialog or the online and diagnostics view of the faulty device.

Fig. 13.9 Diagnostics tab in the inspector window

13.4 Testing the user program

441

13.4 Testing the user program

Following the establishment of a connection to a CPU and loading of the user pro-
gram, you can test the entire program or parts of it, such as individual blocks. You
supply the tags with signals and values and evaluate the information returned by
the program. If the CPU switches to STOP as the result of a fault, the diagnostics buf-
fer provides support toward locating the cause.

Comprehensive programs are tested in sections. If you only wish to test one block,
for example, load the block into the CPU and then call it in OB 1. If OB 1 is structured
such that the program can be tested in sections “from front to rear”, you can select
the blocks or program sections to be tested in that you bypass the calls or program
sections which are not to be processed, e.g. using a jump function.

The following testing functions are available:

b Test in program status
Monitor program execution directly in the program of the block
and control tags

b Monitor PLC tags
Monitor the values in a PLC tag table

b Monitor data tags
Monitor the tag values in a data block

b Test with watch tables
Monitor and control the tag values in watch tables

b “Enable peripheral outputs” and “Modify now”
Control peripheral outputs with CPU at STOP

b Test with force table
Monitor the tags in the force table and set to a fixed value (force).

A general prerequisite for testing the user program is an existing online connec-
tion. When testing with program status, the offline and online versions of the block
must be identical. The CPU is in RUN mode.

13.4.1 Introduction to testing with program status

The program status shows the program execution during runtime. You can monitor
the current signal status of the binary tags and the current values of digital tags.

Caution! Functional disturbances may occur as a result of program modifications
when testing the user program during ongoing operation on the process. Make sure
with each testing step that no serious damage to property or injury to persons can
occur!

Note that the program status requires significant resources, and that under certain
circumstances the test function may therefore be executed with limitations.

13 Online operation, diagnostics and debugging

442

Changing a block with the program status switched on, i.e. with an online connec-
tion present, is described in Section 13.2.5 “Processing blocks offline/online” on
page 431.

Switching the program status on and off

In order to switch on the program status, open the block to be monitored and click
on the Monitoring on/off symbol in the toolbar of the work window.

If an online connection to the CPU has not yet been established, STEP 7 searches for
accessible devices. If necessary, set the interface used in the programming device
in the dialog window Go online, select the PLC station found, and click on the Go
online button.

To switch off the program status, click again on the Monitoring on/off symbol in the
toolbar. You will be asked whether the online connection created when switching
on the program status is to be disconnected. If you click on the No button, the pro-
gram status is terminated but the online connection is retained.

13.4.2 Program status with LAD and FBD

The program status shows the binary signal flow and the values of digital tags di-
rectly in the LAD or FBD program.

Open the block, e.g. by double-clicking in the project tree, set the network whose
program you wish to debug, and click on the Monitoring on/off symbol in the toolbar
of the work window.

LAD program status

In the LAD program status, green continuous lines are used to identify contacts,
coils, and the connections between the program elements which have signal state
“1”. Program elements with signal state “0” are identified by blue dashed lines
(Fig. 13.10).

Fig. 13.10 LAD program status

13.4 Testing the user program

443

FBD program status

In the FBD program status, the boxes of the binary program elements and the con-
nections are displayed by continuous green lines if they have signal state “1”, and
by dashed blue lines if they have signal state “0” (Fig. 13.11). In addition to the col-
ored identification, the signal state (“0” or “1”) is shown for the binary inputs.

Display format with digital tags

You can select the display format of digital tags, which is set as standard to Auto-
matic: You select the digital tag and select Modify > Display format> … from the
shortcut menu. ... > Decimal, … > Hexadecimal, and … > Floating-point are available,
depending on the data type.

You set the display format for the complete network by clicking with the right
mouse button on a free space in the network and selecting Modify > Display format
for network > ... from the shortcut menu.

Controlling operands in the program status

In the program status you can use the programming device to define the signal
states of binary tags and the values of digital tags. This is usually only meaningful
if these tags cannot be controlled from another position, for example inputs
which receive their signal state from the peripheral input channel during the
automatic updating of the process image.

Select the binary tag and then the Modify > Modify to 0 command from the short-
cut menu if the binary tag is to be set to signal state “0” or Modify > Modify to 1 if

Fig. 13.11 FBD program status

13 Online operation, diagnostics and debugging

444

the binary tag is to be set to signal state “1”. In the case of digital tags, select the
Modify > Modify operand… command from the shortcut menu and specify the
desired value.

Selective monitoring and up-to-dateness of the tag values

You can determine at which position the program status is to be executed: You
select the program element or tag and then the Modify > Monitor from here com-
mand from the shortcut menu. The Modify > Monitor selection command means that
only the selected program element is monitored.

Program elements with unknown status or those which are not processed are iden-
tified by continuous gray lines. Black tag values come from the current monitoring
cycle, grey tag values come from a cycle that was processed earlier.

Block calls in the monitored block

If the tested network contains a block call, the call box is represented by green con-
tinuous lines if the EN input is “1”. The box has blue dashed lines if the EN input is
“0”.

You can continue the program status in the called block: You select the block call
and then the Open and monitor command from the shortcut menu. The program
status then changes to the called block.

13.4.3 Program status in SCL

The program status is shown in tabular form to the right of the statements. The line
in the table contains the name and value of the (first) tag in the statement line
(Fig. 13.12).

If the statement line contains several tags, a table with all tags is displayed when
you position the cursor in the statement line. The table line can also be opened. It
will then show all of the tags of the statement line with the monitored values.

If the line contains one of the IF, WHILE, or REPEAT statements, the result of the con-
dition (TRUE, FALSE) is shown in the line. Once the cursor is positioned in the state-
ment line, a table with all of the tags of the statement line appears. The opened
table line continuously shows the tag values of the statement line.

Fig. 13.12 SCL program status

13.4 Testing the user program

445

Addressing and display format

By clicking on the Absolute/symbolic operands in the toolbar of the working window,
you can supplement the symbolic addressing or the absolute addressing or hide the
absolute address again.

You can select the display format, which is set as standard to Automatic: You select
the tag value and select Display format > ... from the shortcut menu. ... > Decimal, ...
>Hexadecimal, and ...> Floating-point are available, depending on the data type.

Modifying operands in the program status

In the program status, you can define the signal states of binary tags and the values
of digital tags using the programming device. This is usually only meaningful if
these tags are not controlled from another point, for example inputs which receive
their signal state from the I/O input channel during automatic updating of the pro-
cess image.

Select the binary tag and then the Modify > Modify to 0 command from the short-
cut menu if the binary tag is to be set to signal state “0” or Modify > Modify to 1 if
the binary tag is to be set to signal state “1”. In the case of digital tags, select the
Modify > Modify operand… command from the shortcut menu and specify the
desired value.

Up-to-dateness of the tag values

Black tag values come from the current monitoring cycle. Grey ones come from a
cycle that was processed earlier. If a tag value is not displayed, the corresponding
tag is not processed or has an unknown status.

If no value can be shown for a tag or event due to missing compilation options, the
cell in the Value column contains three question marks on a yellow background. In
this case, activate the Create extended status information attribute in the block
properties and load the block again into the CPU.

Block calls in the monitored block

If the tested statement line contains a block call, you can continue the program sta-
tus in the called block : You select the block call and then the Monitor command
from the shortcut menu. The program status then changes to the called block.

13.4.4 Monitoring with the PLC tag table

To monitor the tag table, double-click on the corresponding PLC tag table. Click the
Monitor all icon in the toolbar. The PLC tag table changes to online mode and the
Monitor value column is displayed. You can now monitor the tag values (Fig. 13.13).

13 Online operation, diagnostics and debugging

446

13.4.5 Monitoring of data tags

The tag values saved in a data block can be monitored during runtime. This works
for all types of data blocks: global, instance and type data blocks. The program sta-
tus shows the value of the data tags in the Monitor value column.

To monitor the data tags, open the data block, for example with a double-click in the
project tree, and click on the Monitor all icon in the toolbar of the working window.
The Monitor value column with the current values of the data tags is displayed. The
monitored value is the value that exists in the work memory at the time of reading.
A further click on the Monitor all icon exits monitoring mode.

Please note that tag values displayed in monitoring mode can originate from differ-
ent program cycles.

You can “freeze” the monitor values. With monitoring mode switched on, click on
the Snapshot of the monitored values icon in the toolbar of the working window. A
new column Snapshot with the currently present monitor values is displayed. If you

Fig. 13.13 Monitoring with the PLC tag table

Fig. 13.14 Program status for data tags, the data for a counter in the example

13.4 Testing the user program

447

would like to use the monitored actual values as start values, copy the desired val-
ues from the Monitor value column into the Start value column.

Fig. 13.14 shows the monitoring function for an instance data block for a counter
function.

13.4.6 Testing with watch tables

Watch tables contain tags whose values can be monitored and modified (controlled)
during runtime. Any combination of tags is possible, and a specially tailored watch
table can therefore be created for each debugging case.

The following functions can be performed with a watch table:

b Monitor tags

b Modify tags

b Force tags

b “Enable peripheral outputs” and “Modify now”

Tags from the peripherals, inputs, outputs, and bit memory areas as well as tags from
data blocks (global, instance, and type data blocks) can be used in watch tables.

Creating watch tables

Underneath a PLC station in the project tree there is the Watch and force tables
folder with the watch tables and the force table. Further subfolders can be created
within this folder in order to structure the watch tables: Select the Watch and force
tables folder and then the Add group command from the shortcut menu. You can
assign separate names to the new subfolders and the watch tables by using the
Rename command from the shortcut menu.

In order to create a new watch table, double-click on the Add new watch table com-
mand. In the empty table, enter the names of the tags line by line and the display

Fig. 13.15 Example of monitoring of tags in expanded mode

13 Online operation, diagnostics and debugging

448

format from a drop-down list. The display format may differ from the data type of
the tag. You can enter a short explanatory text for each tag in the comment column.
In the watch table, you create a blank line between filled-in lines by moving a blank
line or by copying and pasting. The tags entered with names must previously have
been defined in the PLC tag table or in a data block.

The globally applicable tags (peripherals, inputs, outputs, and bit memories) and
data tags from data blocks for which the Optimized block access attribute is not acti-
vated can also be entered with their memory address (absolute address) in the
Address column (Fig. 13.15).

Monitoring and modifying with triggers

The watch tables permit specification of the monitoring and control time.
The following are available:

b Permanent
In each program cycle, the inputs are monitored and modified at the start of the
cycle prior to execution of the main program, and the outputs at the end of the
cycle following execution.

b Permanently, at start of scan cycle
In each program cycle, the tags are monitored and modified prior to execution of
the main program (useful for inputs or tags which control functions).

b Once only, at start of scan cycle
The tags are monitored and modified once only prior to execution of the main
program (useful for inputs or tags which control functions).

b Permanently, at end of scan cycle
In each program cycle, the tags are monitored and modified following execution
of the main program (useful for outputs or tags which are controlled by func-
tions).

b Once only, at end of scan cycle
The tags are monitored and modified once only following execution of the main
program (useful for outputs or tags which are controlled by functions).

b Permanently, at transition to STOP
The tags are continuously monitored and modified during transition to the STOP
mode.

b Once only, at transition to STOP
The tags are monitored and modified once only during transition to the STOP
mode.

It is also possible to control tags using the Online > Modify > Modify now command
in the menu bar of the project view. The selected tags are then updated as quickly
as possible.

13.4 Testing the user program

449

Using watch tables

In order to use the watch tables, the programming device must be connected online
to the PLC station. Open the watch table and start the desired function (monitor,
modify, force) using the corresponding symbol.

If an online connection to the CPU has not yet been established, STEP 7 searches for
accessible devices. If necessary, set the interface used in the programming device
in the dialog window Go online, select the PLC station found, and click on the Go
online button.

You can call the test functions in the shortcut menu or using the icons in the toolbar
of the working window shown in Fig. 13.16.

13.4.7 Monitoring tags using watch tables

Double-click to open the watch table and select one of the symbols Monitor all or
Monitor now. An online connection to the CPU will be established.

In standard mode, the Name, Address, Display format, Monitor value, and Comment
columns are displayed. The Monitor value column shows the tag value in the display
format which has been set in the Display format column. If Monitor now was
selected, Monitor value shows a snapshot; if Monitor all was selected, the values in
the Monitor value column are updated continuously.

The time of monitoring corresponds to the trigger mode Permanent (see “Monitor-
ing and modifying with triggers” on page 448). You can stop the current monitor-
ing by clicking again on the Monitor all icon.

Please note that peripheral outputs generally cannot be monitored, just like non-
existing data tags (in Fig. 13.15 the output %Q0.3 and the data word %DB2.DBW8).
Undefined data tags can be specified as an address (%DB2.DBW6 in the example) if
the Optimized block access attribute is not activated in the data block.

Monitor with trigger

In expanded mode, you can select the trigger time at which the tag values are read
out of the CPU. If you click on the Expanded mode button in the toolbar, the columns

The icons from left to right:

Name in text Tooltip text

Basic mode
Expanded mode
Modify now
Modify with trigger
Enable PQ
Monitor all
Monitor now

Show/hide all modifiy columns
Show/hide advanced setting columns
Modify all selected values once and now
All active values will be modified by “modify with trigger”
The function “Enable peripheral outputs” disables the output disable (OD)
Monitor all
Monitor all values once and now

Fig. 13.16 Icons in the toolbar of the watch table

13 Online operation, diagnostics and debugging

450

Monitor with trigger and Modify with trigger are displayed. You can then define the
read time for each tag from a drop-down list.

Tag values which are read out once only or which are not read out (yet) are shown
in the Monitor value column with a gray background; permanently read values have
an orange background

Fig. 13.5 on page 432 shows an example of monitoring with watch table in extended
mode.

13.4.8 Modifying tags using watch tables

Double-click to open the watch table and select the symbol Basic mode. In addition
to the Name, Address, Display format, Monitor value, and Comment columns, the
Modify value and Tag selection (represented by a lightning icon) columns are now
displayed (Fig. 13.17).

Enter the value to which the tag is to be set in the Modify value column, and activate
the check box in the Tag selection column if the associated tag is to be modified.
A yellow triangle with exclamation mark indicates that the selected tag has not yet
been modified.

It is recommendable to switch on monitoring mode prior to modification. An online
connection to the CPU is then already made, and the effects of modification can be
monitored.

Caution! Make sure when modifying tags that no dangerous states can result!

To modify the activated tags, click on the symbol Modify now. The tags activated in
the Tag selection column are immediately set (as fast as possible) to the control
value. If a tag is immediately overwritten after the modification by a value from the
program – for example if a switched-on input has been controlled to “0” and the

Fig. 13.17 Example of controlling tags with an error message

13.4 Testing the user program

451

process image updating overwrites the control value again – the yellow triangle
appears again in the Tag selection column.

Alternatively, modification can be triggered by means of the Online > Modify > Mod-
ify now command from the main menu or the Modify > Modify now command from
the shortcut menu. The Modify > Modify to 0 and Modify > Modify to 1 commands
from the shortcut menu immediately control the binary tag selected in the watch
table.

Please note that peripheral inputs can never be modified (in Fig. 13.17 the periph-
eral inputs %I1.0:P and %I1.7:P). Only the tags visible in the table are modified.
Multiple controlling of a tag or parts of a tag in the monitor table is not allowed (in
the figure: the data bit %DB2.DBX6.0 and the data word %DB2.DBW6).

Modifying with triggers

In expanded mode, you can select the trigger time at which the tag values are mod-
ified in the CPU. If you click on the Expanded mode button in the toolbar, the col-
umns Monitor with trigger and Modify with trigger are displayed. You can then define
the control time for each tag from a drop-down list.

If you click the symbol Modify with trigger, all activated tags are updated (following
confirmation) with the control value in accordance with the trigger conditions.
Clicking on the icon again exits permanent control.

Alternatively, modifying can be triggered or terminated using the Online > Modify
> Modify with trigger command from the main menu or the Modify > Modify with
trigger command from the command menu.

13.4.9 Enable peripheral outputs and “Modify now”

In STOP mode, the output modules are normally disabled by the OD signal (com-
mand output disable); the Enable peripheral outputs (PQ) function can be used to
switch off the OD signal so that you can also control the output modules with the
CPU at STOP. Controlling is carried out using a watch table. An application for this
would be checking the wiring of the outputs in STOP mode and without a user pro-
gram.

Caution! Make sure that no dangerous states can occur with “Enable peripheral
outputs”!

Prerequisites for Enable peripheral outputs: An online connection exists to the CPU
which is in the STOP mode. A watch table with the peripheral outputs to be con-
trolled has been created and expanded mode is switched on. Exit all force jobs (see
next Chapter)!

Open the watch table, click on the Basic mode icon, enter the control value in the
Modify value column, and activate the selection checkbox. You switch off the com-
mand output disable (OD) for the output modules via the Enable PQ icon in the tool-
bar. You can now control the tags using the Modify now icon. Alternatively you can

13 Online operation, diagnostics and debugging

452

use the Online > Modify > Enable peripheral outputs and Online > Modify > Modify
now commands from the main menu (Fig. 13.18).

You can then control the peripheral outputs for as long as Enable peripheral outputs
is switched on.

You deactivate the Enable peripheral outputs function – the OD signal is then
switched on again – by selecting the Enable PQ function again, by changing the CPU
mode, or by canceling the online connection.

13.4.10 Forcing tags

Tags can be preassigned fixed values. This action is referred to as forcing. A CPU
1200 can force tags out of the I/O area, i.e. assign a peripheral input with signal
state “0” or “1”, regardless of the voltage at the input terminal, or a peripheral out-
put (the output terminal) with a signal state of “0” or “1” regardless of the program
function. The tags to be forced are entered in the force table. The force table is pres-
ent once for a CPU and cannot be copied or renamed. Forcing is then only possible
if the Enable peripheral outputs function is deactivated.

Please note the following special features when using the force function: forcing is
sent to the CPU by means of a force job. The force job remains active even if online
mode has been terminated and the online connection to the programming device can-
celed!

The force job also remains active when the CPU is switched off and on again! Forcing
can only be terminated by the Online > Force > Stop forcing command; this com-
mand deletes the force job in the CPU.

You can call the test functions when forcing from the shortcut menu or using the
icons in the toolbar of the working window shown in Fig. 13.19.

Fig. 13.18 Example for Enable PQ and Modify now

13.4 Testing the user program

453

Filling a force table

Open the force table by double-clicking in the project tree in the Watch and force
tables folder.

In the empty table, enter the names of the tags line by line and the display format
from a drop-down list. The display format may differ from the data type of the tag.
You can enter a short explanatory text for each tag in the comment column.

The tags entered with names must previously have been defined in a PLC tag table
or in a data block. The globally applicable tags (peripherals, inputs, outputs and bit
memories) and data tags from data blocks for which the Optimized block access
attribute is not activated, can also be entered with their memory address (absolute
address) in the Addresses column (Fig. 13.20).

Monitoring tags in the force table

The entered tags can be monitored. The Expanded mode icon in the toolbar of the
working window opens the Monitor with trigger column. You can set the monitoring
conditions here. You start monitoring by clicking on the Monitor all symbol (refer
to Chapter 13.4.6 “Testing with watch tables” on page 447 for details).

Forcing with the force table

You can call the test functions when forcing from the shortcut menu or using the
icons in the toolbar of the working window shown in Fig. 13.19.

The icons from left to right:

Name in text Tooltip text

Expanded mode
Start forcing
Stop forcing
Monitor all
Monitor once and now

Show/hide advanced setting columns
Start or replace forcing of the visible addresses in the force table
Stop forcing of the selected addresses
Monitor all
Monitor all values once and now

Fig. 13.19 Icons in the toolbar of the force table

Fig. 13.20 Example of forcing of peripheral inputs and outputs

13 Online operation, diagnostics and debugging

454

To carry out forcing, enter a value in the Force value column and activate the check-
box in the Force column (tag selection depicted by a red “F”). A yellow triangle with
exclamation mark indicates that the selected tag has not yet been forced.

It is recommendable to switch on monitoring mode prior to forcing. An online con-
nection to the CPU is then already made, and the effects of forcing can be moni-
tored.

Caution: Make sure when forcing tags that no dangerous states can result!

The Start forcing icon sends a force job to the CPU which contains the tags selected
for forcing. Forcing is effective immediately. A forced tag is marked with a red “F”
in the first column of the watch table. It is not possible to force parts of a tag, for
example of individual peripheral bits, if the peripheral byte is already being forced.

To exit forcing for individual tags, deactivate the checkbox in the tag selection and
click on the Start forcing icon again. A new force job is sent to the CPU which termi-
nates forcing for the tags which are no longer selected.

You exit forcing for all tags using the Stop forcing icon. A new force job is sent to the
CPU which terminates forcing for all forced tags.

Note that termination of forcing leave the tags in their last state! Only the force job is
deleted. For example, an output of a digital module remains in signal state “1” after
termination of forcing if it is not controlled otherwise by the program.

As an alternative to forcing using the icons, you can select one or more tags in the
force table and then the Force > Force to 0, Force > Force to 1, Force > Force all, and
Force > Stop forcing commands from the shortcut menu or the commands from the
main menu under menu item Online > Force > … .

Forcing in association with memory card

The offline project data that is copied to a memory card (program or transfer card)
does not contain any force jobs. If the user program is transferred from a memory
card to the CPU, the force jobs are deleted in the internal load memory.

If an empty program card is plugged in and the user program is copied from the
internal load memory into the memory card, which is then used as an external load
memory, the force jobs are also copied.

If a program card is plugged in during runtime and force jobs are set up, the force
jobs are saved on the memory card (in the external load memory).

Usage of the memory card is described in Chapter 13.2.4 “Working with the mem-
ory card” on page 428.

455

14 Distributed I/O

14.1 Introduction, overview

Distributed I/O is the term used for input/output modules connected to the central
PLC station over a bus system. SIMATIC S7 uses the PROFINET IO, PROFIBUS DP, and
AS-Interface (AS-i) bus systems.

The distributed I/O is handled like the central I/O. The distributed inputs/outputs
are in the same address volume as the central inputs/outputs, and therefore the
addresses of the distributed I/O must not overlap with those of the central I/O. The
distributed I/Os can be addressed via the following operand areas: peripheral
inputs (I:P) and peripheral outputs (Q:P) and – if they are present in the process
image – also via the inputs (I) and outputs (Q).

Transfer between the distributed modules and the central CPU is carried out “auto-
matically” and you need not take this into account when addressing.

Data transfer to and from the distributed I/O is controlled from a central point:
With PROFINET IO it is the IO controller, with PROFIBUS DP it is the DP master, and
with AS-Interface it is the AS-i master. The distributed stations – these are the IO
devices with PROFINET IO, the DP slaves with PROFIBUS DP, and the AS-i slaves with
AS-Interface – are the passive partners in the data transfer.

S7 stations and ET200 stations with a CPU can also be used as distributed I/O sta-
tions and these are then “intelligent” DP slaves or IO devices. While these stations
are controlling their own modules (considered from their viewpoint as central
modules), they also satisfy – when working at the same time as IO devices or DP
slaves – the data requirements of the respective IO controller or DP master.

The distributed I/O is configured using the hardware configuration. PROFINET IO,
PROFIBUS DP (with the CM 1243-5 module as the DP master) and AS-Interface (with
the CM 1243-2 module as the AS-i master) are handled like subnets, in which the
connections needed for the data transfer are “automatically” available.

Network transitions between the subnets can be produced using link and coupler
modules which allow data exchange between the stations connected to the various
networks. The programming device is able to handle programming and servicing
functions over PROFINET IO and PROFIBUS DP. It can reach all (“intelligent”) sta-
tions connected to the subnets if the subnet gateways are present in stations with
routing capability.

14 Distributed I/O

456

14.2 PROFINET IO

14.2.1 PROFINET IO components

PROFINET IO offers a standardized interface in accordance with IEC 61158 for
industrial automation over Industrial Ethernet. An IO controller in the central pro-
grammable controller controls the data exchange with the distributed field devices
which are referred to as IO devices (Fig. 14.1).

Industrial Ethernet can be designed physically as an electrical, optical, or wireless
network. FastConnect Twisted Pair (FC TP) cables with RJ45 connections or Indus-
trial Twisted Pairs (ITP) cables with sub-D connections are available for implement-
ing the electrical cabling. Fiber-optic (FO) cabling can consist of glass fiber, PCF, or
POF. It offers galvanic isolation, is impervious to electromagnetic influences, and is
suitable for long distances. Wireless transmission uses the frequencies 2.4 GHz and
5 GHz with data transfer rates up to 54 Mbit/s (depending on the national approv-
als).

IO controller

The IO controller is the active participant on the PROFINET. It exchanges data cycli-
cally with “its” IO devices. In an S7-1200 automation system, each CPU is also an IO
controller.

IO devices

IO devices are the passive stations on the PROFINET IO. These can be stations
with process inputs and outputs, routers, or link modules. Examples of IO devices

Fig. 14.1 Components of a PROFINET IO system

PROFINET IO

PROFINET IO

Hardware components with PROFINET IO

PROFIBUS DP
AS-Interface

IE/PB
Link

Transmission of process signals

IE/AS-i
Link

PN/PN
coupler

S

S

S7 station with IO controller,
e.g. CPU 1214C

S7 station as intelligent
IO device, e.g. CPU 315-2 PN/DP

ET 200 station as IO-Device,
e.g. ET 200S

Connection
between
subnets

S

14.2 PROFINET IO

457

from the ET 200 distributed I/O system are the ET 200eco, ET 200M, ET 200S, and
ET 200pro.

IO devices with user data are distinguished as follows:

b Compact IO devices which are addressed like a single module

b Modular IO devices which can contain several modules or submodules
which are addressed individually

b Intelligent IO devices with a configured transfer area as user data interface
to the IO controller.

The compact and modular IO devices can be found in the hardware catalog under
Distributed I/O and the corresponding ET200 system. The hardware catalog of
STEP 7 V11 does not contain intelligent IO devices.

Coupling modules

Bus couplers and link modules connect subnets and permit data exchange between
stations connected on different subnets. The following are available for the Ether-
net subnet:

b PN/PN coupler for connecting two Ethernet subnets

b IE/PB Link PN IO for connecting an Ethernet subnet to a PROFIBUS subnet

b IE/AS-i Link for connecting an Ethernet subnet to an
AS-i subnet.

You can find the PN/PN coupler and the IE/AS-i link in the hardware catalog under
Other field devices > PROFINET IO > Gateway > Siemens AG > ... and the IE/PB link
under Network components > Gateways > … .

PROFINET IO system

The IO controller and all IO devices controlled by it constitute a PROFINET IO system
(Fig. 14.2). An IO device is supplied with data by its IO controller within an update
time which is calculated by STEP 7 in specific intervals and in turn sends its data to
the IO controller.

Several PROFINET IO systems can be operated in a PN/IE subnet.

14.2.2 Addresses with PROFINET IO

Station addresses on the Ethernet subnet

The stations on an Ethernet subnet which use the TCP/IP protocol are addressed via
the IP address. This consists of four decimal numbers, each in the range from 0 to
255, and is represented by four bytes separated by dots, for example 192.168.1.3.
This address consists of the subnet number and the actual station address, which
one can extract with the subnet mask from the IP address. Example: If the subnet
mask has the value 255.255.255.0, the subnet number for the above-mentioned IP
address is 192.168.1 and the station address 3.

14 Distributed I/O

458

Each station on the PROFINET is additionally assigned a device name and number.
Further information on the station addresses in an Ethernet subnet can be found
in Chapter 3.4.5 “Configuring a PROFINET subnet” on page 73.

Geographic addresses with PROFINET IO

The geographic address identifies the slot of a module. With an IO device, the geo-
graphic address comprises the ID of the PROFINET IO system, the device number,
the number of the slot, and possibly also a submodule number.

The PROFINET IO system ID is assigned by STEP 7 and is in the range from 100 to
115. Within the station, the “virtual” slot 0 (not physically present) represents the
IO device. The modules with the user data are arranged in an IO device starting at
slot 1.

Logical addresses with PROFINET IO

The user data of the IO devices shares the range of logical addresses with the user
data of the central modules in the S7 station with the IO controller. The logical
addresses of all modules are within the range of peripheral inputs or outputs. This
means that the addresses of the central modules must not overlap with those of the
IO devices.

You use the logical address to address the user data, in other words the signal states
of the digital input/output channels or the values at the analog input/output chan-
nels. Each byte of user data is unequivocally defined by the logical address. The log-
ical address corresponds to the absolute address. A symbol (name) can be assigned
to it so that it is easier to read (symbolic addressing). Further details can be found
in Chapter 4.2 “Addressing” on page 85.

Fig. 14.2 Schematic representation of a PROFINET IO system

S

IO device

IO controller

IO device

PROFINET IO

PROFINET IO system

PROFINET IO system

Central station with centrally
arranged modules

Decentralized stations
with distributed I/O

A PROFINET IO system consists of an IO controller and one or
more IO devices. All modules, both the centrally arranged and
distributed ones, are located in the same address volume.

14.2 PROFINET IO

459

Consistent user data transfer to and from IO devices

Data consistency means that a block of user data is handled together. With
PROFINET IO a CPU 1200 transfers a data block with up to 64 bytes consistently. If
longer data blocks are to be consistently transferred, use the system function
DPRD_DAT for reading and DPWR_DAT for writing. These system functions are
described in Chapter 14.3.4 “System functions for PROFINET IO and PROFIBUS DP”
on page 470.

The handling of consistent user data areas in the user memory is described in
Chapter 4.1.2 „Operand areas: inputs and outputs“ in Section “Consistent user data
areas” on page 81.

14.2.3 Configuring PROFINET IO

General procedure

A prerequisite for configuration of the distributed I/O with PROFINET IO is a created
project with a PLC station. To select the stations involved, start the hardware con-
figuration in the Network view.

b The starting point for the configuration is the IO controller in a CPU 1200.
The IO controller mode is preset.

b Assign a PROFINET IO system to the PN interface of the IO controller.
The Ethernet subnet required is created automatically in the process.

b Select an IO device from the hardware catalog and drag it with the mouse
into the working window.

b Link the IO device to the PROFINET IO system by dragging the PN interface
of the IO device with the mouse to the PN interface of the IO controller.

b Repeat the three steps for every further IO device.

b To parameterize a PN interface, select it in the working window and set
the desired properties in the inspector window.

The result is networking of the IO controller with the assigned IO devices to a
PROFINET IO system (Fig. 14.3).

Fig. 14.3 Example of representation of a PROFINET IO system

14 Distributed I/O

460

You then make the parameter settings for the stations and the fitting with
input/output modules in the Device view.

Configuring the IO controller in the Network view

Prerequisite: You have created a project and a PLC station, for example a CPU 1200.
Start the device configuration and select the Network view tab in the working win-
dow.

Select the PN interface shown in green in the graphic of the CPU and then the Ether-
net addresses group in the Properties tab in the inspector window. Activate the Set
IP address in project option and change the preset IP address and subnet mask if
necessary. Information on the IP address can be found in Chapter 3.4.5 “Configur-
ing a PROFINET subnet” on page 73. Activate the Set PROFINET device name using a
different method option if you wish, for example, to set the IP address per user pro-
gram.

Connect the PN interface to a PROFINET subnet. You can do this in the properties of
the PN interface: Select an existing subnet under Ethernet address in the Subnet
drop-down list or create a new subnet using the Add new subnet button. You can
also click on the PN interface with the right mouse button and select the Add subnet
command from the shortcut menu. A green subnet is shown with the name PN/IE_x.
You can change the name in the subnet properties.

Configure a PROFINET IO system. To do this, click with the right mouse button on
the PN interface and select the Assign IO system command from the shortcut menu.
A green/white marking is shown with the name <Station name>.PROFINET IO system
(xxx). xxx is the number of the IO system. You can change the name and number in
the properties of the PROFINET IO system.

Adding an IO device to the IO system

With the left mouse button pressed, drag the desired IO device from the hardware
catalog to the IO system on the working area. Fig. 14.3 shows three stations of the
distributed I/O: an ET 200M station from the object tree Distributed I/O > ET 200M >
Interface modules > PROFINET > IM 153-4 PN > ... , an ET200eco station from the
object tree Distributed I/O > ET 200eco PN > Compact modules PROFINET > DI/DO >
8DIO x DC24V / 1.3A 8xM12 > … and an ET 200S station from the object tree Distrib-
uted I/O > ET 200S > Interface modules > PROFINET > IM 151-3 PN > … .

The interfaces of the IO devices are connected in the graphic with the green/white
marking and are thus part of the PROFINET IO system.

The automatically assigned station name is applied as the PROFINET device name.
You can change the name in the station properties and also the device number and
IP address.

Configuring an IO device

With the IO device selected, you can set its properties in the inspector window in the
Device view. You fit a modular IO device with the desired modules or submodules
from the hardware catalog and then set their parameters.

14.2 PROFINET IO

461

In the properties of the PROFINET interface, set the Ethernet addresses. Set the
desired application in the Advanced options group.

14.2.4 Real-time communication with PROFINET IO

PROFINET IO offers several types of data transfer:

b Non-time-critical data such as configuration and diagnostic information is
transferred acyclically with the TCP/IP communication standard.

b User data (input/output information) is exchanged cyclically between the IO con-
troller and the IO device (real-time RT) within a defined time period – the update
time.

b Time-critical user data, e.g. for motion control applications, is transferred iso-
chronously with hardware support (isochronous real-time IRT).

A permanent communication channel is reserved on the Ethernet subnet for IRT
communication. RT communication – cyclic data exchange between the IO Control-
ler and IO Devices – and non-real-time TCP/IP communication take place parallel to
the update time. In this way, all three communication types can exist in parallel on
the same subnet.

The configuration of IRT communication is not possible with STEP 7 V11.

Send clock in the PROFINET IO system

Cyclic data exchange is handled within a specific time frame, the send clock. STEP 7
calculates the send clock from the configuration information on the PROFINET IO
system. The send clock is the shortest possible update time.

You configure the send clock in the interface properties of the IO controller. With
the PN interface selected, select a value in the properties tab under Advanced > Real
time settings > IO communication from the drop-down list Shortest possible update
interval.

Update time and watchdog timer for IO devices

The update time is the period within which each IO device in the IO system has
exchanged its user data with the IO controller. The update time corresponds to the
send clock or a multiple thereof. You can increase the update time manually, for
example to reduce the bus load. Under certain circumstances, you can reduce the
update time for individual IO devices if you in return increase the update time for
other devices whose user data can be exchanged non-time-critically.

If the IO device is not supplied by the IO controller with input or output data within
the watchdog timer, it switches to a safe state. The watchdog timer is calculated as
the product of the update time and “Accepted update cycles without IO data”.

You configure the times in the interface properties of the IO device. To do this,
select the IO device and then the PROFINET interface > Advanced options > Real time
settings > IO cycle group in the properties tab. Under Update time, select the Can be
set option and then the update time from the drop-down list. To achieve automatic

14 Distributed I/O

462

adaptation to the send clock, activate the Adapt update time when send clock
changes checkbox. You select the watchdog timer in the Accepted update cycles with-
out IO data drop-down list.

Real time

Real time (RT) means that a system processes external events within a defined time.
If it responds predictably, it is called deterministic. In RT communication, transfer
takes place at a specific point in time (send clock) within a defined interval (update
time). PROFINET IO allows the use of standard network components for RT commu-
nication.

If not all data to be exchanged is transferred within the planned time frame, for
example due to the addition of new network components, some data is distributed
to other send clocks. This can result in an increase in the update time for individual
IO devices.

14.3 PROFIBUS DP

14.3.1 PROFIBUS DP components

PROFIBUS DP offers an interface in accordance with the international standard
IEC 61158/61784 for transmission of process data between an “interface module”
in the central programmable controller and the field devices. This “interface mod-
ule” is referred to as DP master and the field devices as DP slaves (Fig. 14.4).

Fig. 14.4 Hardware components with PROFIBUS DP

PROFIBUS DP

Hardware components with PROFINET IO

DP/DP
coupler

DP/AS-i
Link

PROFIBUS DP PROFINET IO
AS-Interface

IE/PB
Link

Transmission of process signals

Connection
between
subnets

S

S

S7 station with DP master,
e.g. CPU 1214 with CM 1243-5

Compact DP slave,
e.g. ET 200L

Modular DP slave,
e.g. ET 200M

Intelligent DP slave,
e.g. CPU 1212 with CM 1242-5

14.3 PROFIBUS DP

463

The PROFIBUS network can be designed physically as an electrical network, optical
network, or wireless coupling with different data transfer rates. The length of a seg-
ment depends on the transfer rate and is adjustable in steps for an electrical or opti-
cal network from 9.6 Kbit/s to 12 Mbit/s. The electrical network can be configured as
a bus or tree structure. It uses a shielded, twisted two-wire cable (RS485 interface).

The optical network uses either plastic, PCF or glass fiber-optic cables. It is suitable
for long distances, offers galvanic isolation, and is impervious to electromagnetic
influences. Using optical link modules (OLMs) it is possible to construct a linear,
ring, or star topology. An OLM also provides the connection between electrical and
optical networks with a mixed design. A cost-optimized version is the design as a
linear topology with integral interface and optical bus terminal (OBT).

Using the PROFIBUS Infrared Link Module (ILM), a wireless connection can be pro-
vided for one or more PROFIBUS slaves or segments with PROFIBUS slaves. The
maximum data transfer rate of 1.5 Mbit/s and the maximum range of 15 m mean
that communication is possible with moving system components.

DP master

The DP master is the active station on the PROFIBUS. It exchanges data cyclically
with “its” DP slaves. A DP master can be:

b A CPU with integral PROFIBUS interface (with the letters “DP” in
the short designation, e.g. CPU 315-2 PN/DP)

b A communication module in the PLC station (e.g. CM 1243-5)

b The IE/PB Link PN IO

The CM 1243-5 communication module is not included in the hardware catalog of
STEP 7 V11 on delivery. It must be integrated with a hardware support package
(HSP) (see Section “Expanding the hardware catalog” on page 60). After the instal-
lation, the CM 1243-5 communication module is in the hardware catalog under …
> Communication modules > PROFIBUS > CM 1243-5 > … .

DP slaves

The DP slaves are the passive stations on the PROFIBUS DP. These can be stations
with process inputs and outputs, routers, or link modules. Examples of DP slaves
from the ET200 distributed I/O system are the ET 200eco, ET 200M, ET 200S, and
ET 200pro.

DP slaves with user data are distinguished as follows:

b Compact DP slaves which are addressed like a single module

b Modular DP slaves which can contain several modules or submodules
which are addressed individually

b Intelligent DP slaves with a configured transfer area as user data interface
to the DP master

Intelligent DP slaves contain a user program which controls the subordinate (own)
modules. The user data interface to the DP master is a transfer area which can be

14 Distributed I/O

464

divided into different address areas. Examples of intelligent DP slaves are S7 sta-
tions with CPUs having an integral DP slave functionality, as well as the ET 200S dis-
tributed I/O station with the IM 151-8 PN/DP CPU interface and the ET 200pro dis-
tributed I/O station with the IM 154-8 PN/DP CPU interface.

STEP 7 Basic V11 only supports an S7-1200 station (as an intelligent DP slave) with
the CM 1242-5 communication module. The CM 1243-5 communication module is
not included in the hardware catalog of STEP 7 V11 on delivery. It must be inte-
grated with a hardware support package (HSP) (see Section “Expanding the hard-
ware catalog” on page 60). After the installation, the CM 1242-5 communication
module is in the hardware catalog under … > Communication modules > PROFIBUS
> CM 1242-5 > …

Coupling modules

Bus couplers and link modules connect subnets and permit data exchange between
stations connected on different subnets. The following are available for the
PROFIBUS subnet:

b DP/DP coupler for connecting two PROFIBUS subnets

b DP/AS-i link for connecting a PROFIBUS subnet to an AS-i subnet

b IE/PB Link PN IO for connecting an Ethernet subnet to a PROFIBUS subnet

You can find the DP/DP coupler and the DP/AS-i link in the hardware catalog under
Other field devices > PROFIBUS DP > Gateways > Siemens AG > … and the IE/PB link
under Network components > Gateways > IE/PB Link PN IO > … .

PROFIBUS DP master system

The DP master and all DP slaves controlled by it form a PROFIBUS DP master system
(Fig. 14.5). The update time within which a DP slave receives data from its DP mas-
ter and in turn sends data to the DP master depends on the number of DP slaves in
the master system.

PROFIBUS DP is usually operated as a “mono-master system”, i.e. a single DP master
in a bus segment controls several DP slaves. Except for a temporary programming
device for diagnostics and servicing, the DP master is the only master on the bus.
You can also install several DP master systems in a PROFIBUS subnet (“multi-master
system”). However, this increases the response time in individual cases since, once
a DP master has supplied “its” DP slaves, the access privileges are assigned to the
next DP master which in turn supplies “its” DP slaves, etc.

DPV0, DPV1, and S7-compatible operating modes

DP slaves and DP masters are available with different scopes of PROFIBUS functions.
DP slaves with a range of functions in accordance with EN 50170 (abbreviated to:
“DPV0 slaves”) can handle the cyclic exchange of process data. DP slaves with a
range of functions in accordance with IEC 61158/EN 50170 Volume 2 (abbreviated
to: “DPV1 slaves”) have an extended functionality in addition to the cyclic data
exchange, e.g. an increased diagnostics and parameterization capability through

14.3 PROFIBUS DP

465

the use of data records transferred acyclically or the use of new types of interrupt.

PROFIBUS devices from Siemens (“DP S7 slaves”), which can handle further func-

tions in addition to the cyclic data exchange, e.g. diagnostic interrupts, have the

operating mode “S7-compatible”.

The operating modes of DP master and DP slaves must be matched to each other. DP

masters in operating mode “DPV0” control DPV0 slaves, those in operating mode

“S7-compatible” control DPV0 and DP S7 slaves. DPV1 masters from Siemens can

control DP slaves with all operating modes.

The CM 1243-5 module is a DPV1-Master, the CM 1242-5 is a DPV1-Slave.

14.3.2 Addresses with PROFIBUS DP

Station addresses on PROFIBUS DP

Each station on the PROFIBUS subnet has a unique address within the subnet – the

station address (station number) – which distinguishes it from all other stations on

the subnet. The station (the DP master or a DP slave) is addressed on the PROFIBUS

by means of this station address.

STEP 7 assigns the station addresses automatically and you can change the addresses

within the specified range. You set the highest station address in the properties of the

subnet or DP master system under Network settings.

Fig. 14.5 Schematic representation of a PROFIBUS DP master system

DP slave

DP master

DP slave

Intelligent
DP slave

PROFIBUS DP

PROFIBUS DP master system

S

S

Central station with centrally arranged modules

DP master system

A DP master system consists of
a DP master and one or more
DP slaves. All modules, whether
central or distributed, are in the
same address volume.

User data interface in
the intelligent DP slave

For an intelligent DP slave with its own – from its viewpoint
centrally arranged – modules, transfer areas form the user
data interface to the DP master system. For the DP master,
the transfer areas are distributed modules, and for the
intelligent DP slave they are centrally arranged modules.

14 Distributed I/O

466

Geographic address with PROFIBUS DP

The geographic address identifies the slot of a module. With a DP slave, the geo-
graphic address comprises the ID of the DP master system, the station number, and
the slot number.

The DP master system ID is assigned by STEP 7 and is in the range from 1 to 32 for
a DP master integrated in the CPU.

Slot numbering of a DP slave depends on its type. If it is integrated using a GSD file,
the entries in the GSD file determine the slot at which the I/O modules start. With
DP standard slaves, the slots for I/O modules start at 1. The slot numbering of a DP
S7 slave depends on the slots of an S7-300 station. Slots 1 (power supply) and 3
(expansion unit interface module) remain vacant. Slot 2 (CPU) corresponds to the
interface module (header module) of the modular DP slave. The signal modules
(SM) are positioned starting at slot 4. There is also the “virtual” slot 0 (not physically
present); this represents the complete station.

Logical addresses with PROFIBUS DP

The user data of the DP slaves share the range of logical addresses with the user
data of the central modules in the DP master station. The logical addresses of all
modules are within the range of peripheral inputs or outputs. This means that the
addresses of the central modules must not overlap with those of the DP slaves.

You use the logical address to address the user data, in other words the signal states
of the digital input/output channels or the values at the analog input/output chan-
nels. Each byte of user data is unequivocally defined by the logical address. The log-
ical address corresponds to the absolute address; a symbol (name) can be assigned
to it so that it is easier to read (symbolic addressing). Further details can be found
in Chapter 4.2 “Addressing” on page 85.

Consistent user data transfer to and from DP slaves

Data consistency means that a block of user data is handled together. With
PROFIBUS DP a CPU 1200 transfers a data block with up to 64 bytes consistently. If
longer data blocks are to be consistently transferred, use the system function
DPRD_DAT for reading and DPWR_DAT for writing. These system functions are
described in Chapter 14.3.4 “System functions for PROFINET IO and PROFIBUS DP”
on page 470.

The handling of consistent user data areas in the user memory is described in
Chapter 4.1.2 „Operand areas: inputs and outputs“ in Section “Consistent user data
areas” on page 81.

User data interface with intelligent DP slaves

With the compact and modular DP slaves, the addresses of the inputs and outputs
are together with the addresses of the central modules in the address volume of the
DP master. With intelligent DP slaves (abbreviated to: I-slaves), the input/output
modules of the DP slaves are assigned to the slave CPU. Every intelligent DP slave

14.3 PROFIBUS DP

467

therefore has a user data interface as common memory area with the DP master
whose size depends on the slave CPU used.

The user data interface can be divided into several areas of different length and data
consistency. The individual areas then respond like modules whose lowest address
is the module start address. From the viewpoint of the DP master, the I-slave then
appears like a compact or modular DP slave depending on the division.

A transfer area which is represented as an input module from the viewpoint of the
DP master is an output module from the viewpoint of the DP slave and vice versa.
The logical addresses on the master side are in the address volume of the DP master
and the logical addresses on the slave side in the address volume of the DP slave.
The addresses on the master side can be different from those on the slave side.

You address a transfer area like a peripheral input (I:P) or peripheral output (Q:P).
You can address transfer areas with addresses in the area of the process image like
inputs (I) or outputs (Q).

14.3.3 Configuring PROFIBUS DP

General procedure

A prerequisite for configuration of the distributed I/O with PROFIBUS DP is a created
project with a PLC station. To select the stations involved, start the hardware con-
figuration in the Network view.

b The starting point of the configuration is the DP master. For a CPU 1200, it is
the CM 1243-5 communication module. The DP master mode is automatically
activated.

b Assign a PROFIBUS DP master system to the DP interface of the DP master.
The PROFIBUS subnet required is created automatically in the process.

b Set the bus parameters if necessary (highest PROFIBUS address, data
transfer rate, profile).

b Select a DP slave from the hardware catalog and drag with the mouse into
the working window.

b Link the DP slave to the DP master system by dragging the DP interface of
the DP slave with the mouse to the DP interface of the DP master.

b Repeat the last two steps for every further DP slave.

b To parameterize the DP interface, select it in the working window and set
the desired properties in the inspector window.

b Move an intelligent DP slave (an S7-1200 station with CM 1242-5) into the
working window as an independent PLC station, add a CM 1242-5 communica-
tion module (the DP slave mode is automatically activated), assign the DP mas-
ter and configure the transfer area of the user data interface.

The result is networking of the DP master with the assigned DP slaves to a PROFIBUS
DP master system (Fig. 14.6).

14 Distributed I/O

468

You then make the parameter settings for the stations and the fitting with
input/output modules in the Device view.

Configuring the DP master in the Network view

Prerequisite: You have created a project and a PLC station, for example a CPU 1200
with CM 1243-5. Start the device configuration and select the Network view tab in
the working window.

In order to assign a DP master system to the interface, click with the right mouse
button on the DP interface in the working window and select the Assign master sys-
tem command from the shortcut menu. A PROFIBUS subnet and a magenta/white
DP master system is created with the name <Station name>.DP master system (<Mas-
ter system ID>). You can change the master system ID in the properties of the DP
master system under General.

You can change the highest PROFIBUS address, the data transfer rate, and the bus
profile in the properties of the DP master system or in the properties of the
PROFIBUS subnet under Network settings.

Adding a DP slave to the DP master system

With the left mouse button kept pressed, drag the desired DP slave from the hard-
ware catalog to the DP master system in the working window. Fig. 14.6 shows two
stations of the distributed I/O: An ET 200eco station from the object tree Distributed
I/O > ET 200eco > Compact modules PROFIBUS > DI/DO > 8DI/8DO > … and an ET 200M
station from the object tree Distributed I/O > ET 200M > Interface modules >
PROFIBUS > IM 153-2 OD > … . Furthermore, an S7-1200 station with a CPU 1215 and
a CM 1242-5 communication module as intelligent DP slave were added.

The interfaces of the DP slaves are connected in the graphic with the magenta/white
marking and are thus part of the PROFIBUS DP master system.

Fig. 14.6 Example of representation of a PROFIBUS DP master system

14.3 PROFIBUS DP

469

Configuring a compact or modular DP slave

With the DP slave selected, you can set its properties in the Device view. You fit a
modular DP slave with the desired modules or submodules from the hardware cat-
alog and then set their parameters.

You set the PROFIBUS address in the properties of the PROFIBUS interface. Further-
more, it is possible in the Module parameters group and depending on the DP slave
and application to set, for example, the startup property Start up if preset configu-
ration does not match actual configuration, the DP interrupt mode, or the handling
of options.

Coupling an intelligent DP slave to the PROFIBUS DP master system

You initially create an intelligent DP slave (“I-slave”) as a stand-alone PLC station
and then connect the DP interface of the I-slave to the DP master system. You can
find the I-slaves in the hardware catalog in the PLC folder. For STEP 7 Basic V11 SP2,
this is a CPU 1200 with CM 1242-5. Press and hold the left mouse button to drag the
CPU from the object tree PLC > SIMATIC S7-1200 > CPU > … and into the working win-
dow. In the same way, add the CM 1242-5 module from the object tree PLC > SIMATIC
S7-1200 > Communication module > PROFIBUS > CM 1242-5 > … to the station.

You establish a connection to the existing subnet if you drag the DP interface of the
DP slave to the DP interface of another device on the subnet with the left mouse but-
ton pressed, for example to the DP interface of the DP master.

In the properties of the DP interface of the I-slave, the DP slave option under Oper-
ating mode is already activated. Select the assigned DP master from the drop-down
list. The station is then added as DP slave to the PROFIBUS DP master system.

Configuring the user data interface

You configure the user data interface to the DP master in the module properties of
the I-slave. Select the CM module in the working window, and in the inspector
window tab Properties in the group PROFIBUS interface, select the entry Operating
mode > I-slave communication.

Double-click on <Add new> in the Transfer areas table. A new transfer area is cre-
ated. You can change the name in the Transfer area column. In the Transfer direction
column (), click on the arrow to set the type of transfer area (arrow to the right
means input area, arrow to the left means output area from the viewpoint of the
I-slave).

Now set the start address in the Slave address column and the length of the transfer
area in the Length column. The transfer area has a maximum length of 64 bytes. In
the Master address column, set the start address which the transfer area has from
the viewpoint of the DP master. In the Consistency column you can select between
Unit and Total length (Fig. 14.7).

In this manner you can configure further transfer areas. The configured transfer
areas are displayed in the I-slave communication properties group. If you click a

14 Distributed I/O

470

transfer area here, you obtain its details. You can also select here whether a cyclic
update in the process image should take place in the DP master and/or in the DP
slave.

14.3.4 System functions for PROFINET IO and PROFIBUS DP

In connection with PROFINET IO and PROFIBUS DP, you can use the following sys-
tem functions in the user program:

b DPNRM_DG Read diagnostic data from a DP standard slave (only PROFIBUS DP)

b DPRD_DAT Read user data consistently

b DPWR_DAT Write user data consistently

b RDREC Read data record

b WRREC Write data record

b RALRM Read additional interrupt information

Fig. 14.8 shows the graphic representation of the function calls.

Common parameters

The parameter LADDR (for DPNRM_DG, DPRD_DAT and DPWR_DAT), ID (for RDREC
and WRREC) and F_ID (for RALRM) define the addressed hardware object, for exam-
ple a compact DP slave, a module in an IO device, or a transfer area of an intelligent
DP slave. The parameters are supplied with the hardware ID. The hardware ID is
assigned automatically during configuration and is displayed in the object proper-
ties. When programming, you can also select the hardware ID from a drop-down

Fig. 14.7 Example of configuration of the transfer areas of an I-slave

14.3 PROFIBUS DP

471

menu: Double-click on the supply position in front of the parameter and select the
desired object from the drop-down menu, which contains all of the configured rel-
evant objects.

Depending on the function, the RECORD parameter defines the source area from
which the data to be transferred is read, or the destination area into which the
transferred data are written. This can be a symbolically addressed tag or an abso-
lutely addressed data area with the format P#[data block.]Operand Data type Num-
ber (also see Chapter 4.2.3 “Absolute addressing of an operand area” on page 86).
The source or destination area must be equal in length, as configured for the
selected hardware object.

DPNRM_DG Read diagnostic data

DPNRM_DG reads the diagnostic data of a DP standard slave in the format specified
in EN 50 170 Volume 2, PROFIBUS. The read procedure is triggered by REQ = “1” and
is finished when BUSY signals “0”. The number of read bytes is then present in the
function value RET_VAL. Depending on the slave, the diagnostic data is at least 6
bytes and a maximum of 240 bytes long. The first 240 bytes are transferred if the
diagnostic data is longer and then the corresponding overflow bit is set in the data.

The LADDR parameter is supplied with the hardware ID of the addressed object. The
RECORD parameter defines the area in which the read data is saved.

Note that DPMRM_DG is a system function which operates asynchronously. It must
be processed until the BUSY parameter has signal state “0”. RALRM is a system

Fig. 14.8 Graphic representation of system blocks for PROFINET IO and PROFIBUS DP

Read data record

Write data record

Read diagnostic data
from a standard slave

Read user data
consistently

Write user data
consistently

Read additional
interrupt information

System blocks for PROFINET IO and PROFIBUS DP

14 Distributed I/O

472

block which makes the data available synchronously, i.e. immediately following
the call.

DPRD_DAT Read user data consistently

DPRD_DAT reads consistent user data from a DP standard slave or IO device. A
CPU 1200 supports 64 bytes of consistent data. Larger areas must be read with
DPRD_DAT. This is optional for smaller areas. Areas read with DPRD_DAT must be
removed from the cyclic process image update.

The LADDR parameter is supplied with the hardware ID of the addressed object. The
RECORD parameter defines the area in which the read data is saved.

DPWR_DAT Write user data consistently

DPWR_DAT writes consistent user data to a DP standard slave or IO device. A CPU
1200 supports 64 bytes of consistent data. Larger areas must be written with
DPWR_DAT. This is optional for smaller areas. Areas written with DPRW_DAT must
be removed from the cyclic process image update.

The LADDR parameter is supplied with the hardware ID of the addressed object. The
RECORD parameter defines the area from which the transferred data is read.

RDREC Read data record

RDREC reads a data record from a module. The ID parameter is supplied with the
hardware ID of the addressed object. The RECORD parameter defines the area to
which the transferred data is written.

With signal state “1” at the REQ parameter, RDREC reads the data record INDEX
from the module and saves it in the destination area RECORD. The MLEN parameter
specifies how many bytes are to be read. The assignment of INDEX and MLEN is
described in the manual of the respective module.

The transmission can be divided between several program cycles; the BUSY param-
eter has signal state “1” during the transmission.

Signal state “1” in the VALID parameter signals that the data record has been read
without errors. The LEN parameter then indicates the number of transferred bytes.
In the event of an error, ERROR is set to “1”. Error information is then written to the
STATUS parameter.

WRREC Write data record

WRREC writes a data record to a module. The ID parameter is supplied with the
hardware ID of the addressed object. The RECORD parameter defines the area from
which the data to be transferred is read.

With signal state “1” at the REQ parameter, WRREC writes the data record INDEX
from the source area RECORD to the module. The LEN parameter specifies how

14.4 Actuator/sensor interface

473

many bytes are to be written. The assignment of INDEX and LEN is described in the
manual of the respective module.

The transmission can be divided between several program cycles; the BUSY param-
eter has signal state “1” during the transmission.

Signal state “1” in the DONE parameter signals that the data record has been writ-
ten without errors. In the event of an error, ERROR is set to “1”. Error information
is then written to the STATUS parameter.

RALRM Read additional interrupt information

RALRM reads additional alarm information from an alarm-triggering hardware
object on PROFINET IO or PROFIBUS DP, for example, from an IO device or a DP
slave. It is called in the diagnostic interrupt organization block OB 82 or in a block
called within that block. Processing of RALRM is synchronous, i.e. the requested
data is available at the output parameters immediately following the call.

The parameter F_ID is supplied with the hardware ID of the addressed object. The
assignment of the MODE parameter determines the mode of the system block
RALRM. With Mode = 0, RALRM shows you the interrupt-triggering component in
the ID parameter; signal state “1” is assigned to NEW. With Mode = 1, all output
parameters are written. With Mode = 2, RALRM checks whether the component
specified by the F_ID parameter was the interrupt-triggering one. If this applies, the
NEW parameter has signal state “1” and all other output parameters are written.

In bytes 0 to 19, the destination area TINFO (task information) contains the com-
plete start information of the organization block in which RALRM was called, inde-
pendent of the nesting depth in which it was called. Bytes 20 and 21 are filled with
the address of the hardware object. Bytes 22 to 31 contain management informa-
tion, e.g. the ID number of the PROFINET IO device or the PROFIBUS DP slave.

The destination area AINFO (alarm information) contains the header information
and additional interrupt information. The header information for PROFIBUS DP
occupies bytes 0 to 3 and, for PROFINET IO, bytes 0 to 25 and contains, for example,
the length of the received additional alarm information and the alarm type. The
additional alarm information occupies bytes 4 to 223 (for PROFIBUS DP) and bytes
26 to 1431 (for PROFINET IO) and is dependent upon the alarm type.

14.4 Actuator/sensor interface

14.4.1 Components of actuator/sensor interface

The actuator/sensor interface (AS-i) is an industrial fieldbus system for the lowest
process level in automation plants in accordance with the open international stan-
dard EN 50295. An AS-i master controls up to 62 AS-i slaves via a 2-wire AS-i cable
that transfers both the control signals and the supply voltage. Examples of mod-
ules with AS-i master are the S7-1200 communication module CM 1243-2, the

14 Distributed I/O

474

DP/AS-i Link 20E and DP/AS-i Link Advanced modules for linking to PROFIBUS DP,
and the IE/AS-i Link PN IO module for linking to PROFINET IO.

Configuration of an AS-i bus system with STEP 7 V11 Basic is possible with the
CM 1243-2 communication module and the AS-i slaves included in the hardware
catalog.

Fig. 14.9 shows the components of an AS-Interface bus system. The AS-i master is
positioned to the left, next to the CPU. If you use a DCM 1271 data decoupling mod-
ule, a standard power supply unit can be used for the power supply of the AS-i cable.
The data decoupling unit and power supply are not configured in the hardware con-
figuration.

Fig. 14.9 Components for AS-Interface

S7-1200 station
with CM 1243-2 AS-i power

supply

AS-Interface

AS-Interface

Hardware components with AS-Interface

PROFIBUS DP Industrial Ethernet

Transmission of process signals

AS-i actor AS-i sensor

AS-i/AS-i coupler

AS-i
distributor

Extension Plug

or: or: or:

DP/AS-i
Link

IE/AS-i
Link

binary actuators
and sensors
with AS-i ASIC

up to 4 slaves

passive
AS-i module

active
AS-i module

S

AS-i master in
a CPU 1200 station AS-i master in other S7 stations or subnets

up to 8 actuators
or sensors

binary actuators
and sensors
with AS-i ASIC

further
AS-i devices

Connection
to another
AS-i subnet Doubling of the

cable length and
diagnostics function

S7-300 station
with CP 343-2

14.4 Actuator/sensor interface

475

14.4.2 Configuring an AS-i master CM 1243-2

The CM 1243-2 communication module is not included in the hardware catalog of
STEP 7 V11 on delivery. It must be integrated with a hardware support package
(HSP) (see Section “Expanding the hardware catalog” on page 60).

Open the project, select the station, and start the hardware configuration in the
device view. You can find the AS-i master – after installing the corresponding hard-
ware support package – in the hardware catalog under … > Communication module
> AS Interface > CM 1243-2 > … . Double-click on the module and drag it with the
mouse to the station in the working window. The module is positioned to the left,
next to the CPU.

Basic configuration

No AS-i slaves are configured for the “Basic configuration” of the AS-i master. The
hardware configuration reserves one byte of inputs and one byte of outputs as the
“system default” for each possible AS-i slave. The start address of these 62-byte
long blocks in the address area can be set in the properties of the module under
I/O addresses. The Overview of addresses shows the assignment of the AS-i slave
addresses to the logical addresses of the station (Fig. 14.10).

You can configure the assignment to an AS-i subnet in the module properties under
AS-i interface > AS Interface.

For the basic configuration, the configuration data of the AS-i slaves is imported
from an already configured AS-i system. Load the configuration data into the
S7-1200 station and switch the AS-i master into configuration mode. In the Online >
Diagnostics window, the ACTUAL -> PLANNED button imports the slave configura-
tion into the AS-i master.

Fig. 14.10 Assigning the AS-i addresses to the I/O addresses with system default

14 Distributed I/O

476

14.4.3 Configuring an AS-Interface

As an alternative to the “Basic configuration”, in which the AS-i master loads the
slave configuration from an already configured AS-i system, you can also configure
the AS-i system with the slaves in the hardware configuration.

After you have placed a CM 1243-2 communication module in the device view,
switch to the network view. If you have not already done so, insert an AS-i subnet:
Select the AS-i Interface of the master shown in yellow and then select the Add sub-
net command from the shortcut menu.

Configuring an AS-i slave

Drag the desired AS-i slave with the mouse from the hardware catalog under Field
devices > AS-Interface slaves > … to the AS-i subnet. STEP 7 assigns the AS-i address
and the I/O address in the order of the configuration. AS-i slaves from Siemens can
be selected directly from the hardware catalog. If you use AS-i slaves from other
manufacturers, use the universal AS-i slave and configure it with the correspond-
ing data.

The result is networking of the AS-i master with the AS-i slaves (Fig. 14.11).

You set the properties of an AS-i slave in the device view. You can change the AS-i
address under AS Interface in the module properties of an AS-i slave. Under I/O
addresses, set the start address in the area of the inputs or outputs and define
whether the user data is to be automatically updated in the process image.

The properties of a universal slave are displayed after an initial compilation of the
hardware. Now you can also set the profile and the parameters under Options.

Fig. 14.11 Example of representation of an AS-i bus system

14.5 Communication via Modbus

477

14.4.4 Interface to user program

Access to AS-i slaves with binary values

You address the bits of an AS-i slave with binary scan or save functions. If you have
activated the process image update in the configuration, the data is located in the
area of the inputs and outputs. If the process image update is deactivated, you must
access the slave data via the operand area Peripherals.

Access to AS-i slaves with analog values

If you have configured the AS-i slaves in the hardware configuration, you can access
the analog values via the set I/O addresses. If the process image update has been
activated in the configuration, the data is located in the area of the inputs and out-
puts. If the process image update is deactivated, you must access the slave data via
the operand area Peripherals. As 16-bit value in a two's complement, the analog
value occupies two byte addresses.

If the slave configuration has been imported from an already configured AS-i sys-
tem, access the analog values with data records.

Access over the data record interface

To do this, use the system function RDREC for reading and WRREC for writing.
RDREC and WRREC are described in the Chapter 14.3.4 “System functions for
PROFINET IO and PROFIBUS DP” on page 470.

Calling up this function makes all of the functions of the M4 master profile of the
AS-i master specification available. In the device manual of the CM 1243-2 commu-
nication module, you can see which functions these are and how the parameters of
RDREC and WRREC must be assigned.

14.5 Communication via Modbus

Modbus is a standard protocol for data exchange between a “central” station (mas-
ter/client) and several “distributed” stations (slaves/server). With Modbus RTU, the
data is transferred in binary-coded form, with Modbus TCP as TCP/IP packets. In a
Modbus network, a CPU 1200 can be both a master/client station and a slave/server
station.

14.5.1 Modbus RTU

Modbus RTU (Remote Terminal Unit) utilizes serial data transmission with CM
1241 RS232, CM 1241 RS485, or CB 1241 RS485. In the Modbus network (RTU), a
master station controls the data transfer and the slave stations receive or provide
the data. In both stations, the communication function MB_COMM_LOAD config-
ures the connector (port) on the module or on the board. In the master station, the
MB_MASTER function controls the data transfer. In the slave station, the MB_SLAVE
function controls the data transfer (Fig. 14.12).

14 Distributed I/O

478

The following functions are available for Modbus RTU communication:

b MB_COMM_LOAD Configuration of a port for the Modbus RTU protocol

b MB_MASTER Control for the Modbus master

b MB_SLAVE Control for a Modbus slave

Fig. 14.13 shows the calls of the communication functions in LAD representation.
STEP 7 Basic V11 provides Version 2 of the Modbus RTU functions. The functions of
this version may not be used together with functions of Version 1, as provided by
STEP 7 Basic V10.5.

Fig. 14.12 Data structure for the Modbus protocol (RTU)

Fig. 14.13 Calling the Modbus RTU functions in LAD representation

Data structure for the MODBUS protocol (RTU)

PORT PORT

MB_ADDR MB_ADDR

MB_DB MB_DB

DATA_ADDR

DATA_LEN

DATA_PTR MB_HOLD_REG

RS485
RS232

RS485
RS232

CM 1241
CB 1241

CM 1241
CB 1241

Modbus master Modbus slave

Slave Slave

Slave data
in the
master

Modbus
holding
register

MB_COMM_LOAD_DB MB_COMM_LOAD_DB

MB_MASTER_DB MB_SLAVE_DB

MB_COMM_LOAD MB_COMM_LOAD

MB_MASTER MB_SLAVE

Slave data

Calls of MODBUS functions (RTU)

http://pnap.ir/siemens-s71200-price-list/

14.5 Communication via Modbus

479

Parameterization of the port with MB_COMM_LOAD

MB_COMM_LOAD configures the port (the connection) at the CM module or at the
communication board for the Modbus RTU protocol. Executing MB_COMM_LOAD is
a prerequisite for using MB_MASTER or MB_SLAVE. MB_COMM_LOAD can be called
up in the start-up program, for example, in order to set the port properties.

A rising edge at the REQ parameter starts a new job. A successfully executed job is
indicated with the signal state “1” at the DONE parameter. If an error occurs during
job processing, the ERROR parameter is set to signal state “1” and an error number
is output at the STATUS parameter.

The instance data block of MB_MASTER is created at the parameter MB_DB or, in the
slave station, the instance data block of MB_SLAVE is created.

Controlling data traffic with MB_MASTER

MB_MASTER is called as single instance in the main program. A rising edge at the
REQ parameter starts a new job. While the job is running, the BUSY parameter has
signal state “1”. A successfully executed job is indicated with the signal state “1” at
the DONE parameter. If an error occurs during job processing, the ERROR parame-
ter is set to signal state “1” and an error number is output at the STATUS parameter.
The assigning of these control parameters is only valid for one cycle until the next
processing of MB_MASTER.

The address of the slave station is at parameter MB_ADDR. The type of job at the
slave station is defined at the MODE parameter, e.g. read inputs or write outputs.
The DATA_ADDR and DATA_LEN parameters define the data area in the slave to be
read or written.

MB_MASTER uses the data buffer defined at the DATA_PTR parameter as a clipboard
for the data which is read from the Modbus slave or written to the Modbus slave.
The data buffer can be in the bit memory address area or in a data block. The Opti-
mized block access attribute must be deactivated for a data block.

Responding master requests with MB_SLAVE

MB_SLAVE is called as single instance in the main program. The address of the slave
station is at parameter MB_ADDR. If the Modbus master has written data, the NDR
parameter has signal state “1”. If the Modbus master has read data, the parameter
DR has signal state “1”. If an error occurs during job processing, the ERROR param-
eter is set to signal state “1” and an error number is output at the STATUS parame-
ter. The assigning of these control parameters is only valid for one cycle until the
next processing of MB_SLAVE.

The parameter MB_HOLD_REG points to the Modbus holding register, which is used
by the MB_SLAVE as a clipboard for the data that is read from the Modbus master
or is written to the Modbus master. The holding register can be in the bit memory
address area or in a data block. The Optimized block access attribute must be deac-
tivated for a data block.

14 Distributed I/O

480

14.5.2 Modbus TCP

Modbus TCP (Transmission Control Protocol) uses the PROFINET interface of the
CPU. In the Modbus network (TCP), a client station controls the data transfer and
the server stations receive or provide the data. In the client station, the MB_CLIENT
function controls the data transfer. In the server station, the MB_SERVER function
controls the data transfer (Fig. 14.14).

The following functions are available for Modbus-TCP communication:

b MB_CLIENT Control for the Modbus client

b MB_SERVER Control for a Modbus server

Fig. 14.15 shows the calls of the communication functions in LAD representation.

Fig. 14.14 Data structure for the Modbus protocol (TCP)

Fig. 14.15 Calling the Modbus TCP functions in LAD representation

Data structure for the MODBUS protocol (TCP)

CONNECT_ID CONNECT_ID

IP_PORT
IP_OCTET_x

IP_PORT

MB_DATA_ADDR

MB_DATA_LEN

MB_DATA_PTR

MB_HOLD_REG

Address of
the server

Data on
the server

Modbus client Modbus server

Port
number

Data buffer
for server data

MB_CLIENT_DB MB_SLAVE_DB

MB_CLIENT MB_SLAVE

Modbus
holding
register

Calls of MODBUS functions (TCP)

14.5 Communication via Modbus

481

Controlling data traffic with MB_CLIENT

MB_CLIENT is called in the main program. A rising edge at the REQ parameter
starts a new job. While the job is running, the BUSY parameter has signal state “1”.
A successfully executed job is indicated with the signal state “1” at the DONE
parameter. If an error occurs during job processing, the ERROR parameter is set to
signal state “1” and an error number is output at the STATUS parameter. The
assigning of these control parameters is only valid for one cycle until the next pro-
cessing of MB_CLIENT.

Modbus TCP communication requires a communication connection with the spec-
ification as per Open User Communication. The connection is established when the
job is initiated if the DISCONNECT parameter has signal state “0”. Signal state “1”
at the DISCONNECT parameter leads to the connection being canceled. Assigning
the parameter CONNECT_ID specifies the connection. Each connection requires its
own function call (own instance data).

You can address the Modbus server for data exchange via its IP address and the port
number. The four bytes of the IP address are at the parameters IP_OCTET_1 to
IP_OCTET_4. The port number is at the IP_PORT parameter.

You can define the type of job at parameter MB_MODE, e.g. read inputs or write out-
puts. The start address is at parameter MB_DATA_ADDR. The quantity of data to be
transferred is at parameter MB_DATA_LEN. MB_CLIENT uses the data buffer defined
at the MB_DATA_PTR parameter as a clipboard for the data which is read from the
Modbus server or written to the Modbus server. The data buffer can be in the bit
memory address area or in a data block. The Optimized block access attribute must
be deactivated for a data block.

Responding to client requests with MB_SERVER

MB_SERVER is called in the main program. It only responds to a connection request
from MB_CLIENT if the parameter DISCONNECT has the signal state “0”. The ready-
to-receive state of a job can be controlled via this parameter.

Assigning the parameter CONNECT_ID specifies the connection. Each connection
needs its own function call (own instance data) if, for example, the server station
communicates with several Modbus clients. Parameter IP_PORT shows the num-
ber of the port which is monitored by MB_SERVER for connection requests from
MB_CLIENT.

If the Modbus client has written data, the NDR parameter has signal state “1”. If the
Modbus client has read data, the parameter DR has signal state “1”. If an error
occurs during job processing, the ERROR parameter is set to signal state “1” and an
error number is output at the STATUS parameter. The assigning of these control
parameters is only valid for one cycle until the next processing of MB_SERVER.

The parameter MB_HOLD_REG points to the Modbus holding register, which is used
by the MB_SERVER as a clipboard for the data that is read from the Modbus client or
is written to the Modbus client. The holding register can be in the bit memory
address area or in a data block. The Optimized block access attribute must be deac-
tivated for a data block.

15 Communication

482

15 Communication

15.1 Overview

Introduction to data communication with S7-1200

Communication is understood to be the data exchange between networked sta-
tions. A station is a device containing a module with communication capability, for
example a programmable controller, an HMI device, or any other suitable third-
party device. Communication is usually considered from the point of view of the
“local” station connected with a partner station – the “remote” station. In the case
of a bus system, all stations are connected together over one single line; in the case
of a point-to-point connection, the connection is limited to two stations.

The physical connection on its own – the networking – is not sufficient for commu-
nication. A specifically defined sequence, referred to as the protocol, is required to
exchange the data. The communication partners and the protocol are defined when
establishing a connection (“communication connection”).

A PLC station with a CPU 1200 can exchange data with other stations using various
methods. The connection is made

b for Industrial Ethernet via the PROFINET interface on the CPU

b for PROFIBUS via the CM modules CM 1243-5 as DP master and CM 1242-5
as DP slave

b for AS-Interface via the CM module CM 1243-2 as AS-i master

b for point-to-point communication via a CM module CM 1241 or
the communication board CB 1241

The communication with distributed I/O, for which the relevant “master module”
that controls data traffic is inserted in the PLC station, is described in Chapter 14
“Distributed I/O” on page 455.

An HMI station (of an HMI device) can be connected via Ethernet or PROFIBUS,
depending on the device version. Data transmission requires a configured connec-
tion (HMI connection). Special communication functions in the user program are
not required. The data exchange is defined during the configuration of the HMI sta-
tion. Details can be found in Chapter 16 “Visualization” on page 507.

The communication between a PLC station and a programming device does not
require any connection configuration or communication functions in the user pro-
gram.

15.1 Overview

483

Data transmission via Industrial Ethernet

When configuring the networking and connections, Industrial Ethernet is handled
like a bus system. Strictly speaking, however, the Ethernet network consists only of
single point-to-point connections. If only two stations exchange data with each
other, they can be directly connected with a cable. If there are more than two sta-
tions, a connection multiplier – such as the Compact Switch Module CSM 1277 – is
needed, which provides, for example, an interface with four ports. If a station has
two ports connected with a switch, the bus cable can be guided to the next station
via the second port. The configuration of each individual point-to-point connection
is necessary to calculate runtimes and response times.

Data transmission with open user communication

Open user communication transfers data between two PLC stations that are con-
nected together via an Ethernet network. Data transmission can be secured with
the TCP and ISO-on-TCP protocols or unsecured with the UDP protocol. TCP and
ISO-on-TCP require a configured connection. The communication functions
TSEND_C for sending data and TRCV_C for receiving data form the interface to the
user program. The transmission with UDP is connectionless. The communication
access point is established in both stations with the TCON communication func-
tion; it can then be used to send data (TUSEND) and receive data (TURCV).

Data transmission with S7 communication

S7 communication allows data to be transferred between two PLC stations con-
nected via an Ethernet network or PROFIBUS. Data transmission requires a config-
ured connection (“S7 connection”). The communication functions in the user pro-
gram are GET to read data and PUT to write data. In the remote station, the CPU
operating system controls the data traffic without a communication function in the
user program.

Data transmission with a point-to-point connection

A PLC station with a CPU 1200 also supports a serial, character-based point-to-point
connection. This type of communication allows a very generous definition of the
protocol. For example, a printer, barcode reader or modem can be connected to a
CPU 1200 via a CM 1241 communication module using the RS232 or RS485 trans-
mission standard.

The ASCII protocol is available for point-to-point communication, and – in global
libraries – the communication functions for MODBUS and USS drives.

Configuring communication with STEP 7 Basic

The networking and the connections are configured with the hardware configura-
tion in the network view. The connection of a programming device is not configured
except for the parameterization of the PROFINET interface (IP address). Networking
with a programming device and a connection multiplier as well as a point-to-point
connection are not displayed in the network configuration.

15 Communication

484

In Fig. 15.1 you can see the networking (wiring) between the stations necessary for
data exchange. The lower part shows the configuration with the hardware configu-
ration: In the networking view, the networking is represented by the Ethernet sub-
net PN/IE_1 and in the connection view the configured connections between sta-
tions are highlighted; in the example an HMI_Connection.

Before connecting to Ethernet, the PROFINET interface of the CPU must be param-
eterized (see Section “IP address and subnet mask” on page 73). The connection of
a programming device is described in Chapter 13.1 “Connecting a programming
device to the PLC station” on page 421.

The PLC and HMI stations to be networked must be located together in one project.

15.2 Open user communication

15.2.1 Basics

Open user communication is a procedure for transmitting data between two sta-
tions connected to the Ethernet subnet. Data exchange can be implemented using
the protocols TCP in accordance with RFC 793, ISO-on-TCP in accordance with RFC
1006, and UDP in accordance with RFC 768.

Fig. 15.1 Comparison of the wiring and configuration

Physical wiring of the stations

Representation with STEP 7 Basic in network view

Representation of networking

Representation of connection

CPU 1200 with CM

*)

CPU 1215 *)

HMI station

CSM 1277

Programming
device

Barcode
reader

S

PtP connection

A CPU 1215 has two connections which are connected
to a switch and which allow a linear structure.

15.2 Open user communication

485

Data transmission with TCP and ISO-on-TCP is secure (with acknowledgment) over
configured connections. Data transmission with UDP is unsecured (without
acknowledgment) and connectionless.

Prerequisite for open user communication is the networking of the participating
stations via an Ethernet network. The (communication) connection is not created
when configuring the network with the connection table, but occurs via a data area.
The communication functions at runtime use the address data in this data area to
establish the connection (for the TCP and ISO-on-TCP protocols) or to set up the
communication access point (for UDP).

For open user communication with TCP or ISO-on-TCP, use the communication
functions TSEND_C and TRCV_C in the user program. These functions establish a
connection, control data traffic, and – depending on the programming – end the
connection. For the UDP protocol, the TCON communication function sets up the
access point for the participating partner stations. The communication functions
TUSEND and TURCV control the data traffic, where dynamic addressing of the
remote station at runtime is possible.

15.2.2 Open user communication with TCP and ISO-on-TCP

Data structure

Fig. 15.2 shows the data structure of open user communication with the use of the
TCP and ISO-on-TCP protocols.

In the transmitting station, the communication function TSEND_C is called in the
user program. At the parameter CONNECT there is a pointer to a data block that has
the structure of the system data type TCON_Param and contains the connection
data. The parameter DATA points to the data to be sent. In the receiving station, the
communication function TRCV_C is called in the user program. The parameter
CONNECT is supplied with a data block that contains the connection data. The
parameter DATA contains a pointer to the receive mailbox in which the received data
is stored.

Fig. 15.2 Communication functions TSEND_C and TRCV_C

Subnet

Industrial Ethernet

CPU 1200 CPU 1200

Re
so

u
rc

es

CONNECT CONNECT

DATA DATA

Connection
data

Transmission
data

Connection
data

Transmission
data

TCON_Param TCON_ParamTSEND_C TRCV_C

Data transmission with TSEND_C and TRCV_C

Re
so

u
rc

es

http://pnap.ir/siemens-s71200-price-list/

15 Communication

486

At runtime, the communication functions TSEND_C and TRCV_C establish a con-
nection in both stations, transfer the data, and then – depending on the program-
ming – end the connection.

As an alternative to TSEND_C and TRCV_C, the communications functions TCON,
TDISCON, TSEND, and TRCV can be used. Fig. 15.3 shows the data structure used
here.

Before a data transmission, a connection must be established in both stations with
the TCON communication function. At the parameter CONNECT there is a pointer
to a data block that has the structure of the system data type TCON_Param and con-
tains the connection data. The ID parameter identifies the communication connec-
tion and must match the id tag in the connection data and the ID parameters of all
communication functions involved in the connection.

In the transmitting station, the communication function TSEND is called in the user
program. The parameter DATA points to the data to be sent. In the receiving station,
the communication function TRCV is called in the user program. The parameter
DATA contains a pointer to the receive mailbox in which the received data is stored.

With the communication function TDISCON, the connection can be terminated and
the connection resources released.

Transmission Control Protocol (TCP)

The transmission control protocol (TCP) is described in RFC 793. TCP is suitable for
medium to large amounts of data (up to 8192 bytes) with static (fixed) data lengths.
It is capable of routing. Performance features include, for example, recovery in case
of failure, flow control, and reliability.

Fig. 15.3 Communication functions TCON, TDISCON, TSEND, and TRCV

Subnet

Industrial Ethernet

CPU 1200 CPU 1200

CONNECT CONNECT

ID ID

ID ID

DATA DATA

ID ID

Connection
data

Transmission
data

Connection
data

Transmission
data

TCON_Param TCON_ParamTCON TCON

TDISCON TDISCON

TSEND TRCV

Data transmission with TCON, TDISCON, TSEND and TRCV

C
on

n
ec

ti
on

 r
es

ou
rc

es

C
on

n
ec

ti
on

 r
es

ou
rc

es

http://pnap.ir/siemens-s71200-price-list/

15.2 Open user communication

487

TCP is connection-oriented. Applications are addressed by means of port numbers.
TCP is used if the communication partner does not support a connection using
ISO-on-TCP. For such communication partners, enter “unspecified” as the partner
end point in the connection parameters.

If the number of sent bytes is smaller than the number of received bytes (controlled
by the LEN parameters), the job is only signaled as being complete when the receive
mailbox is full, i.e. the first bytes of the next job are also present in the receive mail-
box. If the number of sent bytes is greater than the number of received bytes, the
number of bytes specified in the LEN parameter are written into the receive mail-
box, and the value of LEN is output in the RCVD_LEN parameter. The next block of
sent data is received with each further call.

ISO Transport over TCP (RFC 1006)

The RF 1006 protocol (ISO-on-TCP) can be used to import ISO applications into the
TCP/IP network. It is suitable for medium to large quantities of data (up to
8192 bytes) with dynamic lengths, is capable of routing, and use in a wireless net-
work is possible.

Multiple connections can be established to a single IP address. The unambiguous
assignment of a connection (communication endpoint) to an IP address is provided
by a Transport Service Access Point (TSAP). You can define the TSAP for the connec-
tion in the inspector window in the Configuration tab under Connection parameters.

If the number of sent bytes is smaller than the number of received bytes (controlled
by the LEN parameters of both functions), the sent bytes are written into the receive
mailbox, the job is signaled as being complete, and the RCVD_LEN parameter con-
tains the number of received bytes. If the number of sent bytes is greater than the
number of received bytes, no data is written into the receive mailbox, and the error
Destination buffer too small (status = 16#8088) is signaled.

15.2.3 Open user communication with the UDP protocol

Data structure

Fig. 15.4 shows the data structure of the open user communication with the use of
the User Datagram Protocol (UDP).

In the transmitting station, the TCON communication function is called in the user
program; it sets up the communication access point in the CPU operating system.
The ID parameter identifies the connection between the user program and the CPU
operating system. The specification must match the ID parameter of the communi-
cation function TUSEND and the id tag in the connection data at the parameter
CONNECT. At the parameter CONNECT there is a pointer to a data block that has the
structure of the system data type TCON_Param and contains the connection data.

The communication function TUSEND sends the data specified at the DATA param-
eter to the partner station. At the ADDR parameter there is a pointer to a data area
with the structure of the system data type TADDR_Param, which contains the IP
address and the port number of the partner station.

15 Communication

488

In the receiving station, the communication function TCON is also called in the user
program. The ID parameter identifies the connection between the user program
and the CPU operating system. The specification must match the ID parameter of
the communication function TURCV and the id tag in the connection data at the
parameter CONNECT. At the parameter CONNECT there is a pointer to a data block
that has the structure of the system data type TCON_Param and contains the con-
nection data.

TURCV receives data from the transmitting station and writes it to the receive mail-
box specified at the DATA parameter. At the ADDR parameter there is a pointer to a
data area with the structure of the system data type TADDR_Param, which contains
the IP address and the port number of the partner station.

After data transmission, the communication function TDISCON disconnects the
communication connection specified at the ID parameter or dissolves the commu-
nication access point and frees the resources.

User datagram protocol (UDP)

Data transmission with UDP is described in RFC 768. The protocol is suitable for
transmitting small to medium amounts of data (up to 2048 bytes) quickly, because
it is close to the hardware. It is capable of routing. The delivery of the data is unse-
cured and there is no feedback about its receipt. The communication partner is
addressed as connectionless via the IP address and a port.

The communication functions TUSEND and TURCV handle the interface to the user
program. The communication access point must first be set up with TCON in both
the local and the remote station.

Fig. 15.4 Communication functions TUSEND and TURCV

Subnetz

Industrial Ethernet

CPU 1200 CPU 1200

CONNECT CONNECT

ID ID

ID ID

DATA

ADDR

DATA

ADDR

ID ID

Transmission
data

Partner
address

TCON_Param TCON_Param

TADDR_ParamTADDR_Param

TCON TCON

TDISCON TDISCON

TUSEND TURCV

Data transmission with TCON, TDISCON, TSEND and TRCV

Data for
the access

point

Transmission
data

Partner
address

Data for
the access

point

C
on

n
ec

ti
on

 r
es

ou
rc

es

C
on

n
ec

ti
on

 r
es

ou
rc

es

http://pnap.ir/siemens-s71200-price-list/

15.2 Open user communication

489

15.2.4 Communication functions for open user communication

The following communication functions are available for open user communica-
tion with the protocols TCP, ISO-on-TCP, and UDP:

b TCON Establish a connection to the partner station or to
the operating system

b TDISCON Disconnect

b TSEND Send data with TCP or ISO-on-TCP

b TRCV Receive data with TCP or ISO-on-TCP

b TSEND_C Establish connection and send data with TCP or ISO-on-TCP
(replaces TCON, TDISCON, and TSEND)

b TRCV_C Establish connection and receive data with TCP or ISO-on-TCP
(replaces TCON, TDISCON, and TRCV)

b TUSEND Send data with UDP

b TURCV Receive data with UDP

Fig. 15.5 shows the calls of the functions in ladder logic representation.

Fig. 15.5 Calls of the communication functions for open user communication (LAD)

Calling of functions for open communication

Establish connection

Terminate connection

Receiving data with UDP

Establish connection and send data
with TCP and ISO-on-TCP

Establish connection and receive
data with TCP and ISO-on-TCP

Sending data with TCP and
ISO-on-TCP (alternative to TSEND_C)

Receiving data with TCP and
ISO-on-TCP (alternative to TSEND_C)

Sending data with UDP

15 Communication

490

Description of common parameters

The communication functions for open user communication work asynchronously,
i.e. job processing may require several program cycles under certain circumstanc-
es. Use the REQ and EN_R parameters to control the data transmission The status of
data transmission is shown by the BUSY, NDR, DONE, ERROR and STATUS parame-
ters. You must evaluate these parameters immediately following each processing of
the communication function since they are only valid up to the next call.

The CONT parameter with signal state “1” establishes a connection and retains it.
Data transmission – the sending or receiving of data – only functions with the con-
nection established. Signal state “0” on this parameter cancels the connection
again.

If a rising signal edge occurs at parameter REQ, the task to send data starts. As long
as the signal state is “1”, no other task for the specified connection is accepted. Only
when the communication function recognizes signal state “0” at REQ, can a new
task be started with the change to “1”.

The EN_R parameter activates data reception with signal state “1”. Data receipt is
blocked if EN_R has the signal state “0”.

The DONE parameter shows with signal state “1” that the started job has been com-
pleted without errors. It is only set for the duration of one program cycle.

The NDR parameter (New Data Ready) shows with signal state “1” that the started
job has been completed without errors and that new data has been received. It is
only set for the duration of one program cycle.

The BUSY parameter shows with signal state “1” that job processing has not yet
been completed and that a new job cannot be started.

The ERROR parameter shows with signal state “1” that the started job has been com-
pleted with an error. It is only set for the duration of one program cycle.

The STATUS parameter contains intermediate states or error information.

b If DONE or NDR = “1”, STATUS is occupied by 16#0000.

b If ERROR = “1”, STATUS is occupied by error information.

b If none of these bits is set, STATUS may contain intermediate states
which indicate the progress of the started job.

The following parameters specify the data transmission:

The ID parameter identifies the communication connection between the transmit-
ting and receiving station, or for UDP the connection between the user program
and the communication access point in the CPU operating system.

The CONNECT parameter points to a data block with the data structure of the sys-
tem data type TCON_Param, which contains the description of the connection
parameters.

The DATA parameter contains the send or receive mailbox for the transferred data.
The send and receive mailbox is a tag, e.g. an ARRAY tag in a data block, or an abso-

15.2 Open user communication

491

lutely addressed range, e.g. a range of 32 bytes in the data block DB 10 starting at
byte 64: P#DB10.DBX64.0 BYTE 32.

The ADDR parameter contains the IP address and the port number of the partner
station with the data structure of the system data type ADDR_Param.

TSEND_C Establish connection and send data

The communication function TSEND_C establishes a connection, and sends data
with the TCP or ISO-on-TCP protocol. TSEND_C can also cancel the connection
again.

Establishment of the connection is started if TSEND_C is processed with CONT = “1”.
Following successful establishment, the DONE parameter is set to “1” for the dura-
tion of one program cycle. Data is sent via an established connection when a rising
edge occurs at the REQ parameter. Following successful transmission, DONE is set
to “1” for the duration of one program cycle.

With CONT = “0” the connection is canceled immediately in both the send station
and the partner station.

If the COM_RST parameter has signal state “1”, TSEND_C is started again: an exist-
ing connection is canceled, and a new one established.

The LEN parameter specifies the maximum number of bytes which are sent.

TRCV_C Establishing a connection and receiving data

The communication function TRCV_C establishes a connection, and receives data
with the TCP or ISO-on-TCP protocol. TRCV_C can also cancel the connection again.

Establishment of the connection is started if TRCV_C is processed with CONT = “1”.
Following successful establishment, the DONE parameter is set to “1” for the dura-
tion of one program cycle. TRCV_C only receives data when the EN_R parameter has
signal state “1”. Following successful receipt of data, the DONE parameter is set to
“1” for the duration of one program cycle. Data is received continuously if CONT =
“1” and EN_R = “1”.

With CONT = “0” the connection is canceled immediately in both the send station
and the partner station.

If the COM_RST parameter has signal state “1”, TRCV_C is started again: an existing
connection is canceled, and a new one established.

The parameter LEN specifies the number of bytes received. If LEN is filled with zero,
as many bytes are received as contained in the tag at the DATA parameter. After suc-
cessful data transmission, the parameter RCVD_LEN contains the number of bytes
actually transmitted.

15 Communication

492

Data transmission with TCON, TDISCON, TSEND and TRCV

TCON establishes a communication connection to the partner device. The ID
parameter identifies the connection. The specification must correspond to the id
tag in the connection data at the parameter CONNECT.

The TSEND function sends data with the TCP or ISO-on-TCP protocol over an existing
communication connection specified by the ID parameter. The DATA parameter
contains a pointer to the send mailbox. You can use the LEN parameter to specify
the maximum number of bytes to be sent.

The TRCV function receives data with the TCP or ISO-on-TCP protocol over an exist-
ing communication connection specified by the ID parameter. The DATA parameter
contains a pointer to the receive mailbox. You can use the LEN parameter to specify
the number of bytes to be received. If LEN is “0”, the number of bytes received cor-
responds to the tag at the DATA parameter. Following successful data transmission,
the RCVD_LEN parameter contains the number of actually transmitted bytes.

TDISCON terminates the communication connection specified at the ID parameter
and releases the connection resources.

TUSEND Send data with the UDP protocol

The TUSEND communication function sends data with the UDP protocol. A prereq-
uisite is the previous establishment of a communication access point by TCON.

The assignment of the ID parameter designates the connection between the user
program and the communication access point of the operating system. The value
must agree with the id tag in the connection data. Specify the send mailbox with a
pointer at the DATA parameter.

The information on the communication partner is located in a data area to which
the pointer at the ADDR parameter points. With each new send job, the address and
thus the partner can be changed without having to redefine the communication
access point with TCON.

In the initial state, the REQ, BUSY, DONE, and ERROR parameters have signal state
“0”. Start data transfer with a rising edge at the REQ parameter. On the initial call
with “1”, the data is fetched from the area specified by the DATA parameter. The
number of bytes specified at the LEN parameter is sent (1 to max. 1460).

While the job is running, BUSY = “1”. The job has been successfully completed if
BUSY = “0”, DONE = “1”, and ERROR = “0”. If the job contains errors, then BUSY =
“0”, DONE = “0”, and ERROR = “1”. The error is then specified at the STATUS param-
eter. BUSY, DONE, and ERROR are reset to “0” if REQ is returned to “0”.

The data in the send area can then be modified again when either DONE or ERROR
has signal state “1”.

15.2 Open user communication

493

TURCV Receive data with the UDP protocol

The communication function TURCV receives data with the UDP protocol. A prereq-
uisite is the previous establishment of a communication access point by TCON.

The assignment of the ID parameter designates the connection between the user
program and the communication access point of the operating system. The value
must agree with the id tag in the connection data. Specify the receive mailbox with
a pointer at the DATA parameter.

The information on the communication partner is located in a data area to which
the pointer at the ADDR parameter points. The number of bytes to be received is set
at the LEN parameter (1 to max. 1460). After a data block has been received, the
number of bytes received is made available at the RCVD_LEN parameter and NDR is
set to signal state “1”. Data is only received if the EN_R parameter has signal state
“1”.

While the job is running, BUSY = “1”. The job has been successfully completed if
BUSY = “0”, NDR = “1”, and ERROR = “0”. If the job contains errors, BUSY = “0”, NDR
= “0”, and ERROR = “1”. The error is then specified at the STATUS parameter. BUSY,
NDR, and ERROR are reset to “0” if EN_R is returned to “0”.

The data in the receive area is consistent if NDR has signal state “1”.

15.2.5 Configuring open user communication

Prerequisite for open user communication is the networking of the PLC stations
participating in the data exchange via Industrial Ethernet. The required procedure
is described in Chapter 3.4 “Configuring the network” on page 67. No connection is
configured in the connection table for open user communication.

The communication functions for open user communication are called in the main
program, for example in a function block that is called in the organization block OB
1 or another organization block with the event class Program cycle.

The communication functions can be found in the program elements catalog in the
folder Communication > Open user communication. Drag the desired communica-
tion function into the opened block. When you release the mouse button, you will
be prompted to specify the call option. Select the Single instance option; a separate
data block is then assigned to the call.

In the inspector window under Properties in the Configuration tab, the program edi-
tor shows the block parameters and also the connection parameters for the commu-
nication functions TCON, TSEND_C, and TRCV_C (Fig. 15.6).

Fill out the fields highlighted in red that are still empty. If entries remain open,
for example because the data areas still have to be created in the partner station,
you will later be shown the connection dialog again if the communication function
is selected.

In the connection dialog, you specify the partner device, the connection type (TCP
or ISO-on-TCP, for TCON also UDP), and the connection ID. The connection ID iden-

15 Communication

494

tifies the connection and must be the same in both stations. (Multiple connections
between the partners can be created.)

In the Connection data field, specify the name of a data block, which is then created
by the program editor and parameterized at the CONNECT parameter. If you pro-
gram the communication function appropriate to the connection in parallel in the
partner device, a data block with the connection data is also created here. Enter this
data block in the Connection data field under Partner. The data block with the con-
nection data is a type data block with the structure of the system data type
TCON_Param.

Use the Establish active connection option to specify which of the stations is to initi-
ate the connection.

For the TCP and UDP connection types, enter the port number of the partner under
Address details. The number 2000 (dec) is specified by default. If you create multiple
connections, assign each connection its own port number (in the range of 2000 to
5000 decimal).

For the connection type ISO-on-TCP, enter the access points (TSAP). The TSAP_ID
must be unique in a station. If you create multiple connections, assign each connec-
tion its own TSAP ID. A TSAP has a length of 2 to 16 bytes.

By default, when configuring the connection editor, the TSAP “E0.01.49.53.4F.6F.
6E.54.43.50.2D.31” is assigned. The first byte “E0” stands for open user communi-
cation. “01” specifies the module (rack = 0, slot = 1). The next bytes are the ASCII
characters “ISOonTCP-1”.

Fig. 15.6 Configuring the connection parameters for open user communication

15.2 Open user communication

495

If you enter a new TSAP, first enter the character sequence in the field TSAP (ASCII).
You then add the characters “E0.01.” before it in the TSAP ID field. In the TSAP
(ASCII) field, the TSAP is no longer displayed because the first character (E0) is not
an ASCII character.

You then complete the fields for the block parameters in the inspector window in
the Configuration tab in the Block parameters group.

15.2.6 Configuring a PN interface with T_CONFIG

T_CONFIG configures the integral PROFINET interface of the CPU. A prerequisite is
that the Set PROFINET device name using a different method option was set during
parameterization of the PROFINET interface with the hardware configuration when
assigning the IP parameters. Fig. 15.7 shows the data structure used and the func-
tion call in LAD representation.

The adjustable parameters are the IP address, subnet mask, and router address. If
the station is an I/O device, the PROFINET device name can also be changed.

IP_CONF works asynchronously, i.e. processing of a job can extend over several pro-
gram cycles. The job is started with signal state “1” at the REQ parameter. The REQ
parameter must remain “1” for as long as the BUSY parameter has signal state “1”.
The job has been completed if BUSY = “0”. The DONE parameter indicates with sig-
nal state “1” that the job has been completed without errors. In the event of an
error, ERROR has signal state “1”. The STATUS parameter provides information on
errors which have occurred and the ERR_LOC parameter identifies the source.

You specify the hardware ID of the PROFINET interface at the INTERFACE parameter.
STEP 7 specifies the hardware ID during configuration and lists it in the System con-

Fig. 15.7 Setting a PN interface with T_CONFIG

CONF_DATA

INTERFACE

Configuration
data

Hardware ID

T_CONFIG

CONF_DATA

Configure PN interface

T_CONFIG overwrites the properties
of the integrated PN interface. The values
are saved in a data block, to which
the parameter CONF_DATA is pointing.

The hardware ID is assigned by STEP 7
and can be read in the table of
system constants.

Calling the function T_CONFIG in LAD representation

15 Communication

496

stants table of the default tag table with the data type HW_INTERFACE. You can reach
the default tag table in the project tree under the station in the PLC tags folder. The
CONF_DB parameter is a pointer to the configuration data.

15.3 S7 communication

15.3.1 Basics

Data can be exchanged with other S7 stations using S7 communication via
PROFINET or PROFIBUS. The communication connections are configured in the
connection table.

In the local station, communication functions control the data traffic: GET requests
data from the remote station, PUT writes data to the remote station. No communi-
cation functions are required in the user program in the remote station (partner
station). The operating system of the CPU performs the necessary work (“one-way
data exchange”).

15.3.2 Data structure for one-way data exchange

Fig. 15.8 shows the data structure of S7 communication with one-way data
exchange.

In the user program in the local station, the communication function GET is called
if data should be read from the remote station, and the communication function
PUT is called if data should be written to the remote station. In the remote station,
the operating system controls the data traffic.

Fig. 15.8 Data structure for the communication functions GET and PUT

Subnet

Industrial Ethernet or PROFIBUS

CPU 1200 CPU 1200

ADDR_x

ADDR_x

ID

ID

RD_x

SD_x

Area
address1

GET

PUT

Operating
system

Data transmission with S7 communication

C
on

n
ec

ti
on

 r
es

ou
rc

es

C
on

n
ec

ti
on

 r
es

ou
rc

es

Transferred
data1

Area
address2

Transferred
data2

Area
address1

Transferred
data1

Area
address2

Transferred
data2

15.3 S7 communication

497

At the parameters ADDR_1 to ADDR_4, you define the data areas in the remote sta-
tion with absolute addressing. With the communication function GET you define
the receive mailboxes for the read data at the parameters RD_1 to RD_4. With the
communication function PUT, you define the send mailboxes for the data to be writ-
ten at the parameters SD_1 to SD_4.

No user program for sending or receiving is required in the remote station. The
remote station can transmit the data in the operating modes STOP and RUN.

15.3.3 Communication functions for one-way data exchange

The following blocks are available for one-way data exchange:

b GET Read data from a partner CPU

b PUT Write data to a partner CPU

GET and PUT have four send and receive areas that are shown when the represen-
tation is opened. Fig. 15.9 shows the calls of the functions in ladder logic represen-
tation.

Description of parameters

At the ID parameter, you specify the connection over which the data traffic is to be
implemented. Here you specify the connection ID from the connection table. The
connection ID can be changed during runtime so that an instance data block can be
used for several connections.

At the parameters ADDR_1 to ADDR_4 with the REMOTE data type, you define the
data areas in the remote station with absolute addressing. Example: The pointer
P#DB24.DBX0.0 BYTE 32 defines an area of 32 bytes in data block DB 24 beginning
with data byte DB 0 (see also Chapter 4.2.3 “Absolute addressing of an operand
area” on page 86).

With the communication function GET you define the receive mailboxes for the read
data at the parameters RD_1 to RD_4: RD_1 for the data from the field ADDR_1, etc.
With the communication function PUT, you define the send mailboxes for the data
to be written at parameters SD_1 to SD_4, with SD_1 for the area ADDR_1, etc.

Fig. 15.9 Calls of the communication functions for S7 communication (LAD)

Read data with one-way
data exchange

Write data with one-way
data exchange

Calling of communication functions for S7 communication

15 Communication

498

Not all ADDR_x, RD_x, or SD_x parameters must be assigned. This assignment
begins with the first parameter and must be continuous. The data length at param-
eter ADDR_x must agree with the data length of the associated tags at RD_x or SD_x.
The data to be transferred can be absolutely or symbolically addressed tags or abso-
lutely addressed operand areas. The tags in a data block with activated Optimized
block access attribute can only be accessed with symbolic addressing.

The REQ parameter starts data transmission. Note: On the first call, the REQ param-
eter must have signal state “0” (FALSE). To start a transmission job, a rising edge is
required.

The function signals with signal state “1” at the DONE or NDR parameters that the
job has been completed without errors. Any errors are signaled by “1” at the ERROR
parameter. The STATUS parameter shows with an assignment which is not zero
either a warning (ERROR = “0”) or an error (ERROR = “1”). You must evaluate the
DONE, NDR, ERROR, and STATUS parameters after every function call.

15.3.4 Configuring S7 communication

Prerequisite for S7 communication is the networking of the PLC stations participat-
ing in the data exchange via Industrial Ethernet or PROFIBUS. The required proce-
dure is described in Chapter 3.4 “Configuring the network” on page 67. For S7 com-
munication, an S7 connection must be configured in the connection table.

The communication functions for S7 communication are called in the main pro-
gram, for example in a function block that is called in the organization block OB 1
or another organization block with the event class Program cycle.

Fig. 15.10 Configuring the connection parameters for S7 communication

15.4 Point-to-point communication

499

The communication functions can be found in the program elements catalog in the
folder Communication > S7 communication. Drag the desired communication func-
tion into the opened block. When you release the mouse button, you will be
prompted to specify the call option. Select the Single instance option; a separate data
block is then assigned to the call.

Under Properties in the Configuration tab in the inspector window, the program edi-
tor shows the connection parameters and the block parameters (Fig. 15.10).

Fill out the fields highlighted in red that are still empty. If entries remain open,
for example because the partner station still has to be created, you will later be
shown the connection dialog again if the communication function is selected.

In the connection dialog, select the S7 connection for data transmission or create a
new connection by clicking Connection overview (the button with three dots). The
connection ID identifies the connection and must be the same in both stations.
(Multiple connections between the partners can be created.)

Use the Active connection establishment option to specify which of the stations is to
initiate the connection.

You then complete the fields for the block parameters in the inspector window in
the Configuration tab in the Block parameters group or supply the block parameters
directly at the function call in the working area.

15.4 Point-to-point communication

15.4.1 Introduction to point-to-point communication

Point-to-point (PtP) communication can be used to exchange data with external de-
vices such as printers or barcode readers over a serial interface.

A CPU 1200 supports the Freeport protocol for character-based, serial communica-
tion so that the data transmission protocol can be completely configured via the
user program. The scope of delivery of STEP 7 also includes functions for data
transmission with the USS Drive protocol and the protocols Modbus RTU Master
and Modbus RTU Slave.

The point-to-point communication is implemented with the CM 1241 communica-
tion module (transmission media RS232 or RS485). On the CM 1241 module are the
indicators

b Diagnostics LED
Flashes red after switching-on until the module is addressed (recognized)
by the CPU. It then flashes green until the module has been parameterized.
When ready for operation, the LED lights up green permanently.

b Send LED
Lights up when data is sent to the connected device.

b Receive LED
Lights up when data is received from the connected device.

15 Communication

500

Fig. 15.11 shows the communication functions available for point-to-point commu-
nication.

15.4.2 Configuring the CM 1241 communication module

A CM 1241 communication module is arranged on the left side of the CPU. You can
operate up to three CM modules on a CPU 1200. Each module has a port (a connec-
tion of the interface) for the external device.

You can configure the parameters of the PtP interface with the hardware configura-
tion or set them with the PORT_CFG communication function in the user program
during runtime.

Fig. 15.11 Communication functions for PtP communication

Port configuration

Reading and setting RS232 signals

PORT

PORT

PORT

PORT

PORT

Send
buffer

Receive
buffer

CM 1241
module

CM 1241
module

PORT_CFG

SGN_GET

SEND_CFG

SGN_SET

RVC_CFG

Data transmission with point-to-point communication

Control data transmission

PORT

BUFFER

BUFFER

LENGTH

LENGTH

PORT

PORT

CM 1241
module

SEND_PTP

RCV_PTP

RCV_RST

Set the transmission parameters of the port and the
send and receive parameters using the PORT_CFG,
SEND_CFG and RCV_CFG communication functions.
The settings with these functions can be made dy-
namically in the control program during runtime.
They overwrite the configuration settings of the
hardware configuration editor.

Create the hardware ID at the PORT parameter
which has been defined by the configuration editor
and which specifies the CM module.

Trigger the sending of data using the SEND_PTP
communication function. The data is removed from
the send buffer and transferred to the communica-
tion module. This module then carries out the
actual data transmission.

Enable the receipt of sent data using the RCV_PTP
communication function. Each item of data must be
enabled separately. The transmitted data is then
available in the receive buffer when the receipt has
been acknowledged by the communication module.

Delete the receive buffer in the communication
module using the RCV_RST communication func-
tion.

Scan the signals at the RS232 interface (DTR, DSR,
RTS, CTS, DCD and RING) using the SGN_GET com-
munication function.

Set the signals at the RS232 interface (RTS, DTR and
DSR) using the SGN_SET communication function.

15.4 Point-to-point communication

501

A prerequisite for configuring a communication module is a project with a PLC sta-
tion. Start the device configuration editor in the project tree under the PLC station.
In the device view, select the module on the Hardware Catalog task card – with
active filter function – under Communication modules > Point-to-point > and the
desired interface media (RS232, RS485, or RS422/485) and drag it to the slot on the
left of the CPU.

You can then set the configuration data in the inspection window.

Port configuration

With PtP communication, data is transmitted character-by-character. A character
can consist of 7 or 8 bits. A parity bit can be transmitted in addition to the character
bits and is used for error detection: the signal state of the parity bit is selected for
even parity such that the total of the bits with signal state “1” is even, or odd with
an odd parity. The transmitted character is terminated by 1 or 2 stop bits.

When you configure the ports, set the transmission rate (baud rate), the parity
type, number of data bits per character, and the number of stop bits.

Under Wait time you can select which time period to wait between transmissions.

You set the operating mode at the RS422/485 interface: Full duplex (simultaneous
transmission in both directions) or half duplex (transmission in only one direction
at a time). In the multipoint-capable connection in full duplex operation, you can
operate the communication module as master or slave.

With the RS232 interface and the RS422/485 interface in full-duplex mode, you
specify under Flow control the method used to control the exchange of data between
sender and receiver. If you choose XON/XOFF, specify the encoding for the XON char-
acter and the XOFF character.

Configuration of data transfer

It is possible to control the data traffic over the serial interface using a self-defined
communication protocol. Set the transmission parameters depending on the RS232
or RS485 standard under Configuration of transmitted message and then define the
beginning and end of the message under Configuration of received message.

15.4.3 Point-to-point communication functions

The following communication functions are available for PtP communication:

b PORT_CFG Set port configuration

b SEND_CFG Set send parameters

b RCV_CFG Set receive parameters

b SEND_PTP Trigger sending of data

b RCV_PTP Enable data receipt

b RCV_RST Empty receive buffer

b SGN_GET Read RS232 signals

b SGN_SET Write RS232 signals

15 Communication

502

The calling of functions for PtP communication are shown in Fig. 15.12.

Programming communication functions

The communication functions for PtP communication are called in the main pro-
gram; for example, in a function module which is called in the organization block
OB1 or in another organization block with the event class Program cycle.

Open the block and the program elements catalog to program a communication
function. Under Communication in the folder Communications processor > Point-to-
Point, select the function and drag it to the open block. When you release the mouse
button, you will be prompted to specify the call option: Call as a single instance with
its own data block or as multi-instance with storage of instance data in the instance
data block of the calling function block.

Description of common parameters

If a rising signal edge occurs on the REQ parameter, the job is started. As long as the
signal state remains “1”, no other job is accepted. Only when the communication
function recognizes a signal state “0” at REQ can a new job be started with a change
to “1”.

The EN_R parameter activates data reception with signal state “1”.

Fig. 15.12 Calls of the functions for PtP communication in LAD representation

Calling of functions for point-to-point communication

Set send
parameters

Set receive
parameters

Trigger sending
of data

Enable data
receipt

Empty receive
buffer

Read RS232
signals

Write RS232
signals

Set port
configuration

15.4 Point-to-point communication

503

The DONE parameter shows with signal state “1” that the started job has been com-
pleted without errors. The parameter is only set for the duration of one program
cycle.

The NDR parameter (New Data Ready) shows with signal state “1” that the started
job has been completed without errors and that new data has been received. It is
only set for the duration of one program cycle.

The ERROR parameter shows with signal state “1” that the started job has been com-
pleted with an error. It is only set for the duration of one program cycle.

The STATUS parameter contains intermediate states or error information:

b If DONE or NDR = “1”, STATUS is occupied by 16#0000.

b If ERROR = “1”, STATUS is occupied by error information.

b If none of these bits is set, STATUS may contain intermediate states
which indicate the progress of the started job.

The following parameters specify the data transmission:

The PORT parameter specifies the CM module with the hardware ID which is defined
when configuring the CM module.

The BUFFER and LENGTH parameters define the send or receive mailbox for the
transmitted data.

Changing the configuration settings during runtime

The properties of a port are set when configuring the CM module. These properties
are “static”, which means they are transmitted from the load memory to the
CM module when switching on the PLC station and apply to further operation. Us-
ing communication functions, these properties can be changed “dynamically”
during runtime. The “dynamically” changed properties are not permanent; they
are replaced by the “static” properties during the next call.

The PORT_CFG function changes the PORT properties such as baud rate, parity,
number of data bits and stop bits.

The SEND_CFG function controls the intervals between activation of the RTS signal
and start of data transmission, between the end of data transmission and deactiva-
tion of the RTS signal, and the pauses at the beginnings and ends of messages.

The RCV_CFG function influences the conditions for the start and end of data to be
transmitted. Data which satisfies these conditions can be received using the
RCV_PTP communication function. The receive conditions are combined in the data
structure CONDITIONS.

Sending and receiving data

The SEND_PTP function transmits the data from the send mailbox in the user mem-
ory to the CM module, and triggers the sending of data. The actual transmission to
the external device is handled by the CM module.

15 Communication

504

The RCV_PTP function enables receipt of sent data, whereby each item of data must
be enabled separately. The data is transmitted from the CM module to the receive
mailbox in the user memory.

The RCV_RST function empties the receive buffer of the CM module.

Reading and writing RS232 signals

The SGN_GET function reads the signal states of the DTR, DSR, RTS, CTS, DCD and
RING signals at the RS232 port.

The SGN_SET function writes the signal states of the RTS, DTR and DSR signals at the
RS232 port.

15.4.4 USS protocol for drives

With the communication module CM 1241 RS485 or the communication board CB
1241 RS485, up to 16 Siemens drives that support the universal serial interface
(USS) can be controlled. The following functions are provided by STEP 7:

b USS_DRV Control a drive

b USS_PORT Communication with the USS network

b USS_RPM Read an operating parameter from the drive

b USS_WPM Write an operating parameter to the drive

Fig. 15.13 shows the calls of the functions of the USS protocol in ladder logic repre-
sentation.

Fig. 15.13 Calls of the USS functions in LAD representation

Calls of USS functions

Control a drive

Communication with
the USS network

Read an operating parameter
from the drive

Write an operating parameter
to the drive

15.4 Point-to-point communication

505

A single data block is available for all controlled drives per CM 1241 communication
module or CB 1241 communication board. The transmission of data is taken over
by the block USS_PORT. The block USS_DRV controls a drive whose number is spec-
ified at the DRIVE parameter. The block USS_RPM reads an operating parameter
from the drive; the block USS_WPM writes an operating parameter to the drive
(Fig. 15.14).

The USS_DRV function block controls a drive. A separate call of the function block is
required for each drive. You specify the drive number at the DRIVE parameter.
When calling for the first drive, assign an instance data block to the function block.
For all future calls, select the same data block as instance data block, which you
choose from a drop-down list.

The USS_RPM function reads an operating parameter from the drive whose number
you specify at the DRIVE parameter. At the parameter USS_DB, the data block is
specified that contains the data for all drives of a CM module.

The USS_WPM function writes an operating parameter to the drive whose number
you specify at the DRIVE parameter. At the parameter USS_DB, the data block is
specified that contains the data for all drives of a CM module. If you want to write
the parameter to the EEPROM of the drive control, take note of the limited number
of write accesses for an EEPROM.

Fig. 15.14 Data structure for the USS protocol

Data structure for the USS protocol

A data block contains the data of a module or of a board for all drives.

USS_DRV_DB

..
.DRIVE

USS_DB

USS_DB

USS_DB

DRIVE

DRIVE

RS485

CM 1241
CB 1241

USS_DRV_DB

USS_DRV

USS_RPM

USS_WPM

USS_PORT

Common data

Data for Drive 1

Data for Drive 2

Data for Drive 3

...

Data for Drive 16

Drive 16

Drive 15

Drive 14

Drive 13

Drive 1

The USS protocol is used to control up to 16 drives with one CM 1241 RS485 module or
a CB 1241 RS485 board.

15 Communication

506

The USS_PORT function transfers the drive data between the data block and the CM
module. It is called only once per CM module.

The blocks USS_DRV, USS_RPM, and USS_WPM must be called in the main program;
any organization block is possible for the block USS_PORT. The processing of
USS_PORT must not be interrupted. The block must be called in a time interval that
depends on the baud rate of the serial connection and the time response of the
drive.

16.1 Introduction to visualization

507

16 Visualization

16.1 Introduction to visualization

An HMI station (HMI = Human Machine Interface) is an operator control and mon-
itoring device for manually controlling a process, for recording process data, and
for displaying process alarms.

The configuration data of the HMI station is saved in a “project”. A project contains
all of the data for an automation solution. The project also includes the configura-
tion data for a PLC station, since an HMI station on its own cannot control a process
(machine or plant). The HMI station receives the data to be displayed from the pro-
cess via the PLC station and controls the process via the PLC station. It is recom-
mendable to generate the user program for the PLC station prior to configuring the
HMI station; at least, however, the interface between the stations so that data
exchange can be configured at the HMI station end. The interface between the sta-
tions comprises a logical connection which defines the type of data exchange (the

Fig. 16.1 Interface between HMI and PLC station

HMI connection

HMI station PLC station

Ethernet

PN/IE subnet

PLC tagsExternal HMI tags

Data blocksArea pointers

Interface between HMI and PLC station

The “Devices & networks” editor can be used to establish an HMI connection between the PLC and
HMI station.

When defining the external HMI tags and area pointers, specify the HMI connection via which the
data exchange is to take place and the corresponding tags in the PLC station. The external HMI tags
and the area pointers in the HMI station are mapped 1:1 in the PLC station. Data exchange is carried
out automatically by the HMI station at the intervals defined in the configuration.

16 Visualization

508

“protocol”) and the tags and area pointers whose data is exchanged between the sta-
tions (Fig. 16.1).

The HMI program is created offline – without a connection to the HMI station.
STEP 7 Basic includes WinCC Basic as the configuration software for a Basic Panel.
You insert an HMI station into a project, create the process screens, and configure
the contents of the screens using predefined screen objects which you can also
adapt according to requirements. These objects can be texts and graphics, input
and output fields for process values, alarm displays, etc.

Following completion, you can simulate the configuration on the programming
device, e.g. test the configuration without an HMI station. The process values are
defined either using a table of values or via the previously programmed PLC sta-
tion. Following simulation, the configuration data is loaded into the HMI station
and put into operation together with the PLC station.

Chapter 16 “Visualization” describes the configuration of Basic Panels. The follow-
ing Chapter 16.1.1 provides a brief overview of the panels that can be configured
with STEP 7 Basic V11.

16.1.1 Overview of HMI Panels in STEP 7 Basic

Together with the new SIMATIC S7-1200 programmable controller, a range of Key
Panels and Basic Panels has been provided as HMI devices, which work excellently
together with the S7-1200 controllers. These devices are configured using the
WinCC Basic application. WinCC Basic is integrated in the STEP 7 Basic engineering
software and can be accessed via the Visualization portal. Fig. 16.2 shows the front
views of the different types.

SIMATIC Key Panels

Key Panels are pre-assembled key panels for simple machine operation. The feature
large illuminated keys with excellent tactile feedback, which can even be operated
with gloves and are thus suitable for harsh industrial environments. The buttons
have LED backlighting that can be adjusted in terms of brightness and color (red,
yellow, green, blue, white). All keys can be individually labeled using slide-in labels.
The connection to the control is implemented via PROFINET. The connection con-

Fig. 16.2 Front views of different panels

KP300 mono PNKP8 PP17-II KTP600 color PN

Front views of selected Key Panels and Basic Panels

16.1 Introduction to visualization

509

sists of two RJ45 sockets that are interconnected by an integrated switch and which
allow the construction of a linear structure without additional module (Table 16.1).

SIMATIC Push Button Panels

Push Button Panels are pre-assembled operator panels for simple machine opera-
tion. They feature short-stroke keys in different numbers depending on the ver-
sion. These keys can be labeled and have built-in, two-color surface LEDs. The con-
nection to the controller is implemented through a serial interface, either as a DP
standard slave for a PROFIBUS DP connection or as an I/O device for connection to
PROFINET IO. The PROFINET connection consists of two RJ45 sockets that are inter-
connected by an integrated switch and which allow the construction of a linear
structure without additional module (Table 16.1).

SIMATIC Basic Panels

Basic Panels are available in size 3” as Key Panel (KP), from 4” to 12” with touch
screen and additional keys (KTP), and as a pure touch screen (TP) in the size 15”.
Variants can be selected for connection to PROFINET and PROFIBUS. The degree of
protection achieved when installed is IP 65 for the front and IP 20 for the rear (Table
16.1).

Table 16.1 Selected technical specifications of the Key Panels

KP 8 KP 8F KP 32F PP 7 PP 17-I PP 17-II

Number of keys 8 8 32 8 16 32

Number of LEDs 8 8 32 8 16 32

Digital inputs/outputs (user-configurable) 8 8 16 – – –

Additional digital inputs – – 16 4 16 16

Additional digital outputs – – – – 16 16

Failsafe digital inputs – 2 4 – – –

Table 16.2 Selected technical data of Basic Panels

KP 300
Basic
mono PN

KTP 400
Basic
mono PN

KTP 600
Basic
mono PN

KTP 600
Basic color
PN or DP

KTP 1000
Basic color
PN or DP

TP 1500
Basic
color PN

Display size 3.6” 3.8” 5.7” 5.7” 10.4” 15”

Resolution, pixels 240 80 320 240 320 240 320 240 640 480 1024 768

Colors black/white 4 gray levels 4 gray levels 256 colors 256 colors 256 colors

Touch screen no yes yes yes yes yes

Function keys 10 4 6 6 8 no

User memory 512 KB 512 KB 512 KB 512 KB 1024 KB 1024 KB

16 Visualization

510

16.1.2 Creating a project with an HMI station

The basis for configuring an HMI station is a project. The project contains the data
structure for the automation solution within which the configuration data of an
HMI station is also to be accommodated. At the top of the hierarchy, a project con-
tains the configured PLC and HMI stations, the Online access folder with the
LAN adapters of the programming device, and the SIMATIC card readers folder with
the SD card readers.

In order to configure an HMI station, it is sufficient to merely create the HMI station
in the project. However, it is recommendable to first create the PLC station to which
the HMI station is to be connected. The communication connections can then be
defined directly when configuring the corresponding HMI elements.

How to create a project is described in Section 1.3.3 “Creating and editing a project”
on page 41.

Adding an HMI station

Prerequisite: You have created a project.

An HMI station can be added in both the portal view and in the project view. In the
portal view, select the Open existing project command in the start portal, select the
project in the table, and click on the Open button. In the next window, select Config-
ure a device. In the Devices & networks portal, which then opens, choose Add new
device. The device selection window is opened (Fig. 16.3).

Fig. 16.3 Selection window Add new device

16.1 Introduction to visualization

511

To add an HMI station in the project view, open the project and double-click in the
project tree on the Add new device command. The device selection window is then
opened.

In the selection window, click on the “HMI” button, select the desired device from
the hardware catalog, and assign a meaningful name. If you wish to be guided by
the HMI device wizard through the further basic configuration, activate the Start
device wizard check box. Click on the OK button. The HMI device wizard is now start-
ed if it has been activated, otherwise the HMI editor starts.

Using the HMI device wizard

The HMI device wizard guides you through the basic configuration in the following
steps:

b In the PLC connections window you can select – if present – the PLC station
to which the HMI station is to be connected.

b In the Screen layout window you can select the screen resolution and back-
ground color and define whether a header is to be displayed with the date
and company logo. The settings are stored in Template_1.

b In the Alarms window, you can select the alarms to be displayed: unacknowl-
edged alarms, active alarms, and active system events. The settings are stored
in Template_1.

Fig. 16.4 Configuring system screens using the HMI device wizard

16 Visualization

512

b In the Screens window, you can use a root screen to generate further screens
in your desired selection hierarchy, i.e. which screens can be called from a
specific screen. You can assign names to the screens.

b In the System screens window you can specify which predefined screens are
to be used to display system functions such as operating modes, user ad-
ministration, and project and system information (Fig. 16.4).

b In the Buttons window you can position the button areas (left, bottom, or right)
and arrange the system buttons (symbols for root screen, login, language, and
exit) in the button area. The buttons for the root screen and unacknowledged
alarms are already present. Drag the icons – even those that have already been
added – to the buttons you want.

b Click Finish to exit the HMI device wizard.

You can change or supplement these settings during the further configuration.

16.1.3 Cross-references for HMI objects

The cross-reference list provides an overview of the locations at which HMI objects
are used. If you wish to change an object, for example, the cross-reference list shows
you the positions in the configuration at which this change has an effect.

The objects displayed in the cross-reference list are the HMI station, all folders in
the project tree under the HMI station, and the HMI editors with the configured
objects. To display the cross-reference list, select an object and then the Cross-refer-
ences command from the shortcut menu.

The cross-reference list is available in two views: The Used by tab shows the posi-
tions at which the selected object is used. The Uses tab shows the objects used by

Fig. 16.5 Example of a cross-reference list for HMI configuration

16.2 Creating HMI tags and area pointers

513

the selected object. In the Used by view you can choose the options Show used and/or
Show unused, in the Uses view the options Show defined and/or Show undefined
(Fig. 16.5).

You can use the icons in the toolbar to update the cross-reference list and to define
its settings. For example, the selection Show undefined also shows the references to
previously deleted objects.

The entries in the list can be opened or closed in order to display or hide the subor-
dinate objects. Clicking on the link in the Point of use column opens the correspond-
ing editor in order to process the referenced object.

You can also display the cross-reference list in the inspector window: Select an
object in the working window or in the project tree. Select Cross-reference informa-
tion from the shortcut menu or open the Info tab in the inspector window and then
the Cross-reference tab. You are provided with the cross-references for the selected
object and the subordinate objects.

16.2 Creating HMI tags and area pointers

16.2.1 Introduction to HMI tags

A tag identifies a memory location for a value (data content) with a data type (data
format) by means of a name (symbol). For example, a tag can be defined with the
name “Level”, which represents a fixed-point number (data type UINT) with a (start)
value of 0.

Two types of HMI tags are encountered in the engineering software for an HMI sta-
tion: internal tags and external tags.

An internal HMI tag does not have a connection to the PLC station. It is saved in the
HMI station, and can only be used by the program of this station. Table 16.3 shows
the data types which can be used for internal HMI tags.

Table 16.3 Data types for HMI tags

Designation Description Designation Description

BOOL Binary tag REAL 32-bit floating-point number

SINT 8-bit value with sign LREAL 64-bit floating-point number

USINT 8-bit value without sign WSTRING String with 16-bit character set

INT 16-bit value with sign DATETIME Date and time in the format
DD.MM.YYYY hh:mm:ss

UINT 16-bit value without sign

DINT 32-bit value with sign ARRAY One-dimensional field with an
index range from 0 to maximum 99

UDINT 32-bit value without sign

16 Visualization

514

An external HMI tag (process tag) is the image of a memory location in the PLC sta-
tion. This memory location can be accessed by both the HMI station – with the HMI
tag name – and by the PLC station – with the PLC tag name. If an HMI connection
between the PLC station and the HMI station is configured in network view, this is
called an integrated connection. In an integrated connection, the PLC tag can be
addressed absolutely or symbolically and can be in a data block with optimized
access or standard access. A connection is not integrated if it is configured in the
connection table, for example because both stations are not located together in the
same project. A PLC tag can be accessed via a non-integrated connection only with
absolute addressing.

With the HMI configuration, the expression “PLC tag” stands for a tag in the PLC sta-
tion. This can be a tag from the PLC tag table or a data tag from a data block.

The external HMI tags accept the data types assigned to them in the PLC station
(PLC data types, not with data type STRUCT). With a PLC tag with data type ARRAY,
the HMI tag accepts the number (“array elements”) and the data type of the ele-
ments.

In addition to the external tags, it is also possible to exchange data between the HMI
and PLC station using Area pointers.

16.2.2 Creating an HMI tag

All HMI tags are located in the project tree under the HMI station in the HMI tags
folder. When creating an HMI station, the default tag table, into which you can enter
the HMI tags, is automatically created. Double-click on Add new tag table to add
additional tag tables. For the selected HMI tags folder, you can create subfolders for
a better overview with the Add group command from the shortcut menu. A tag can
only be defined once (in an HMI station there is only a single tag table, which can
be divided into subtables). Double-click on Show all tags to obtain an overview of all
configured HMI tags.

To create an HMI tag, open an HMI tag table by double-clicking on it. If you want to
create an internal tag, select <Internal tag> as connection. In the Data type column,
select the HMI data type from a drop-down list. For the ARRAY data type, enter the
range in square brackets, followed by the keyword OF and the data type, e.g. ARRAY
[0..24] OF INT.

With an external tag (process tag), set the connection to the PLC station and select
the PLC tag. You can select tags from a PLC tag table or from data blocks (in the Pro-
gram blocks) folder. The data type of the PLC tag is automatically applied. Under
Acquisition cycle, set the time interval with which the updating is to be carried out.
Make sure with these settings that the communication load on the connection
between the HMI and PLC stations remains within acceptable limits.

16.2 Creating HMI tags and area pointers

515

Configuring an HMI tag

In the Properties tab of the inspector window, you can set further properties of the
selected tag. For example, you can set the type of recording in the Properties section
under Settings:

b Cyclic in operation = the tag is updated regularly as long as it is displayed
in a screen

b Cyclic continuous = the tag is updated regularly even if it is not displayed
in a screen

b On demand = the tag is updated on request, e.g. by a system function

Under Range you can set an upper and a lower limit value for the selected tag. Under
Linear scaling the range of values of the PLC tag is converted linearly into a range of
values in the HMI station. Scaling is carried out for the data exchange in both direc-
tions. The start value when switching on the HMI station or up to the first update is
defined under Values. Multiplexing (indirect addressing) allows you to determine
the used tag during runtime, and not before. A multiplex tag consisting of a list of
tags is used for configuration. An index tag then selects the used tag from this list.

In the Events tab you can assign a function list with system functions to be executed
if certain events such as a change in value or a limit violation occur.

16.2.3 Creating an area pointer

An area pointer defines a memory area in the PLC station. The programs of the HMI
and PLC stations exchange data via this memory area. Example: when changing the
screen, the number of the current process screen is transferred to the PLC station
by means of the area pointer Screen number. The program of the PLC station can re-
spond to this.

The area pointers must be configured prior to use. The length of an area pointer is
specified in 16-bit words. The memory area to which an area pointer refers is pres-
ent in a data block in the user program. An area pointer with a length = 1 can also
be a PLC tag from the PLC tag table. With a length of > 1, the PLC tag in the data
block is created with data type ARRAY and a 16-bit data type (e.g. WORD) with the
length of the area pointer, e.g. ARRAY [1..4] OF WORD.

Overview of area pointers

Table 16.4 lists the available area pointers. The global area pointers Screen number,
Date/time PLC and Project ID can only be used once per station and only in one con-
nection.

b Screen number: When changing the screen, the HMI station transfers the screen
number to the PLC station (global area pointer).

b Job mailbox: A control job consists of a job number and up to three parameters.
The PLC station writes a control job into the data area; if the HMI station has ac-
cepted the job, it overwrites the job number with zero.

16 Visualization

516

b Date/time: The PLC station writes the control job No. 41. The HMI station then
transfers the date and time in data type DTL to the PLC station.

b Date/time PLC: The PLC station writes the date and time in data type DTL to the
data area which is then read cyclically by the HMI station. The HMI station im-
ports the date and time (global area pointer).

b Coordination: The HMI station transfers its actual operating mode in this data ar-
ea: Startup (bit 0 = “0” during startup), offline/online mode (bit 1 = “0” with on-
line mode) and communication readiness (by means of a “sign-of-life bit”, bit 2
changes its signal state at approx. 1 Hz).

b Project ID: The HMI station can recognize whether it is connected to the “correct”
PLC station. The project ID is created when configuring the HMI station: dou-
ble-click on the Runtime settings editor in the project tree under the HMI station,
and enter a value between 1 and 255 in the Screens section in the Project ID field.
Then write the same value in the PLC station in the data area of the Project ID area
pointer. During startup, the HMI station compares the two values, and does not
start unless they agree.

b Data record: The Data record area pointer is required for synchronized transfer
of a recipe data record. Handling of recipes is described in Section 16.4.3 “Work-
ing with recipes” on page 535.

Table 16.4 Area pointers for Basic Panels

Area pointer Required for Length HMI PLC

Screen number Transfer of number of current screen 5 Writes Reads

Job mailbox Triggering of functions on the HMI station with the
job numbers:
14: Set time BCD-coded
15: Set date BCD-coded
23: Log on user
24: Log off user
40: Transfer date/time to PLC station
41: Transfer date/time to PLC station (DTL)
46: Update tag
49: Clear event buffer
50: Clear error alarm buffer
51: Screen selection
69: Read data record from PLC station
70: Write data record to PLC station

4 Reads
and

writes

Reads
and

writes

Date/time Transfer of date and time to PLC station 6 Writes Reads

Date/time PLC Transfer of date and time to HMI station 6 Reads Writes

Coordination Transfer of HMI station status to PLC station 1 Writes Reads

Project ID Checking project ID in HMI station 1 Reads Writes

Data record Transfer of recipe data records with synchronization 5 Reads
and

writes

Reads
and

writes

16.3 Configuring process screens

517

Configuring an area pointer

Prerequisite: A PLC station, an HMI station, and an HMI connection have been cre-
ated in the project. The user program of the PLC station contains a data block in
which the data area for the area pointer is declared (see Chapter 6.4 “Programming
a data block” on page 194).

Double-click on the Connections editor in the project tree under the HMI station.
The top part of the connection window contains a table with the configured connec-
tions.

There are two tables in the bottom part of the connection window in the Area
pointers tab: the table with the area pointers created for the connection selected in
the connection table is shown at the top, and at the bottom the table with the global
area pointers which can only be created once in the HMI station and only in one con-
nection.

You can activate an area pointer in the top table using the Active check box and in
the bottom table by specifying the connection. Assign the PLC tag to the area point-
er. The PLC tag must have been created previously in the PLC station with the same
length as the area pointer. You can set the acquisition cycle using the Job mailbox
and Date/time PLC area pointers.

16.3 Configuring process screens

16.3.1 Introduction to configuring process screens

You use process screens to operate and monitor the process. A process screen can
map a plant, display process sequences, output process values, or facilitate opera-
tor actions. Predefined objects are available for creating a screen, and can be insert-
ed and adapted according to your requirements.

The properties of a screen, for example the resolution and colors, depend on the
HMI station used.

A screen may consist of static and dynamic objects. Static objects are texts or graph-
ics which do not change during process operation. Dynamic objects are e.g. texts,
numerical values, trends and bars which change depending on process values.

You can also use a screen to access the process by means of control elements or to
call another screen. An input field allows definition of a setpoint for the process,
and you can use function keys – if the HMI station is appropriately equipped – to
trigger actions in the process, for example. Global function keys always trigger the
same action, regardless of the screen in which they are positioned. With local func-
tion keys the triggered action depends on the displayed screen.

Configuration of the process screens is carried out in the following steps:

b Beginning with a root screen, the number of screens and their call hierarchy
are defined.

b The navigation strategy within a screen and between screens is defined.

16 Visualization

518

b The existing template or the global screen is adapted, and/or new templates
are created.

b Screens are created using the objects saved in the libraries.

16.3.2 Working window for process screens

The toolbar of the working window for process screens contains the most important
setting options for the properties of a selected screen object or for displaying the
screen contents (Fig. 16.6).

Object properties such as the font family and color can also be set in the inspector
window. You can overlap objects, rotate them vertically and horizontally, and align
them on the grid. You can set the grid width, grid display, and alignment on the
grid in the Grid section on the Layout task card.

You can use the zoom function to set the size – either using the icons in the toolbar
or in the Zoom section on the Layout task card.

Fig. 16.6 Working window for process screens

http://pnap.ir/siemens-s71200-price-list/

16.3 Configuring process screens

519

16.3.3 Working with screen layers

Each process screen has 32 layers which are “overlaid”. Layer 0 is the lowest layer,
layer 31 is in the foreground. Layers allow objects to be given nesting depth. The
objects of a layer are also “stacked”. The first object inserted is located at the “rear”
layer, the next one above it, etc. Objects can be shifted within a layer from the front
to the rear, or can be shifted to a different layer.

One of the 32 layers is always active; this is the layer at which the process screen is
currently being processed. All 32 layers are displayed when a screen is opened.
You can hide all layers during configuration except for the active layer.

You can set the visibility of a layer either with the selected screen background in the
inspector window in the screen properties under Layers or on the Layout task card
under Layers.

To change the (stack) sequence of an object, select the object and then one of the
Bring to front, Move forward, Move backward or Send to back commands from the
Order shortcut menu. The stack order of the objects present in the layer is also
shown in the Layout task card: the highest object is the one at the rear. You can use
the mouse to drag the screen objects into a different order. In the same manner you
can drag a screen object to a different layer. You can also define the layer for a
screen object in the inspector window, in the screen properties under Miscella-
neous.

16.3.4 Working with templates

You can use a (screen) template as the basis for a process screen. The screen then
imports the template's objects. You can modify these objects in the current screen,
and add new objects. If you modify an object in the template, the object is modified
in all screens based on this template.

The templates are saved in the project tree under the HMI station in the Screen man-
agement folder under Templates. You can copy, rename or delete templates. You can
structure the Templates folder by selecting it and then the Add group command in
the shortcut menu.

A standard template is also created when you create an HMI station. You can adapt
this to your requirements: open the template in the project tree under the HMI proj-
ect in the Screen management and Templates folder by double-clicking on Tem-
plate_1. You can then add new objects or modify existing ones (see Section 16.3.8
“Working with objects in process screens” on page 522).

You can also create other templates in addition to the standard template: double-
click on Add new template in the Templates folder, and set the template's properties
in the inspector window. You can then configure the contents of the template.

Global screen

In the global screen you can configure the screen objects for the entire HMI station
which then apply to all screens irrespective of the template on which they are

16 Visualization

520

based. These objects are the function keys, the alarm window, and the alarm indi-
cator.

You define the basic assignments of the function keys in the global screen. These
assignments are imported into all other screens, and can be replaced by local as-
signments in the templates and in the individual screens.

To configure the global screen, double-click on Global screen in the Screen
management folder.

16.3.5 Working with function keys

A function key is a key on the HMI station with a configurable assignment for Press
key and Release key. Function keys with a global assignment always trigger the same
action, regardless of the currently displayed process screen. Function keys with a
local assignment can trigger a different function in each screen. The local assign-
ment of a function key in a template applies to all screens based on this template.
The local assignment of a function key in a screen overwrites the assignment from
the template on which the screen is based, and this in turn overwrites the global as-
signment of the global screen.

Note: If a screen with local function keys is overlapped by an alarm view or an alarm
window, the function keys are nevertheless active. This may occur in particular on
HMI stations with small displays.

Configuring a function key

The configuration procedure is the same in a global screen, template, or process
screen. Open the global screen, template or process screen, and select the function
key. Make the settings in the inspector window under Properties and General.

When configuring a template, the assignment of a function key is imported from
the global screen if the Use global assignment check box is activated. When config-
uring a screen, the assignment is imported from the template or global screen if the
Use local template check box is activated. In order to make an assignment which is
only applicable to the template or screen, deactivate the check box, and select a
screen and, if applicable, an access privilege.

Assign a graphic to the function key which is then displayed on the function key in
the screen area. Fig. 16.7 shows some examples of standard graphics.

The graphics from the Project graphics folder under Languages & resources in the
project tree are offered as standard. You can also integrate your own graphics into
this folder.

You can limit the circle of users with access to a function key. A requirement is the
definition of user groups and privileges. Set the desired privilege in the properties
of the function key under General in the Runtime authorization input field. Creation
of user administration is described in Section 16.4.4 “Working with the user admin-
istration” on page 539.

16.3 Configuring process screens

521

You can configure the action to be triggered in the properties of the function key
under Events and Press key or Release key. Click in the function list on
<Add function>, and select the desired function from the drop-down list (see
Section 16.4.1 “Input and display of process values” under “Working with function
lists” on page 528). Add further functions as required.

16.3.6 Creating a new screen

When creating a project you can use the HMI device wizard to create the required
screens and their call hierarchy. You can also add new screens at any time.

Double-click in the project tree under the HMI station and the Screens folder on the
Add new screen editor. In the inspector window in the Properties tab under General,
enter the name and number of the screen, define the colors for the background and
grid, and also specify whether the screen display is based on a template.

In a screen without template – or, to be more precise: with the general template con-
taining the properties of the HMI station – the configuration only applies to the cur-
rent screen. If the screen is based on a template, modify the template centrally for
all screens derived from it. For example, you can create a template with a specific
assignment of the function keys, and derive all screens with function keys from
this.

The screen is stored in the Screens folder. You can copy and rename a screen.
You can structure the Screens folder by inserting further folders: select the Screens
folder and then Add group in the shortcut menu.

In the lower figure, several
standard graphics are shown
as examples from left to right:

b “NavigateHome_HMI”

b “AlarmDisplay_HMI”

b “Right_Arrow”

b “ToggleLanguage_HMI”

b “Login_HMI”

b “ExitRuntime_HMI”

Fig. 16.7 Selection window for the graphic and examples of standard graphics

http://pnap.ir/siemens-s71200-price-list/

16 Visualization

522

16.3.7 Configuring a screen change

Starting with a root screen which is displayed when the device is switched on, it is
possible to call further screens with a button or function key during runtime.
The root screen, the further screens, and the links between the screens can be de-
fined when creating the HMI project using the HMI device wizard. You can modify
or extend these definitions at any time.

To define the root screen, double-click in the project tree under the HMI station on
Runtime settings and set the start screen in the General section.

Prerequisite for configuring a screen change: the screen to be selected is present in
the Screens folder, and the current screen is open in the working window.

In order to assign a screen change to a button, drag the screen to be opened into the
working window with the mouse button pressed. A button is created labeled with
the name of the screen. In order to assign a screen change to a function key, drag
the screen to be opened to the function key with the mouse button pressed.
The function key then shows a yellow triangle.

You can then set the button's properties in the inspector window. Under Events and
Click (with a button) or Events and Press key (with a function key) you can use the
ActivateScreen system function to set the new screen and the number of the object
which is to be focused following the screen change.

16.3.8 Working with objects in process screens

The graphic objects for designing process screens are present on the Tools task
card (Table 16.5). When configuring screens and templates, Tools has the following
categories:

b Basic objects (line, ellipse, circle, rectangle, text field and graphic view)

b Elements (I/O field, button, symbolic I/O field, graphic I/O field, date/time field,
bars and switches)

b Controls (alarm view, trend view, user view and recipe view)

b Graphics (symbols from a variety of fields)

Objects for process screens can also be included in libraries. Global libraries are
supplied together with WinCC Basic, for example the Buttons-and-Switches global
library on the Libraries task card. You can save your own frequently-used objects in
the Project library. You can copy the HMI objects directly into the project library or
create a separate folder: select the project library and then Add folder in the short-
cut menu. You can also insert external graphics with standard file formats into the
graphics libraries.

You can copy objects from the tools folder or from the library into the open screen,
or drag them into the screen using the mouse. You can then process the object, for
example change the size or color, rotate or mirror it, or shift it in front of or behind
other objects (for processing of stack order and layers, see Section16.3.3 “Working
with screen layers” on page 519).

16.3 Configuring process screens

523

If you wish to select several objects, use the mouse to draw a selection frame around
the objects, or click on the objects with the Shift key pressed. Copy an object by
dragging it to the new position with the Strg or Ctrl key pressed.

Object groups consist of several objects which have been “grouped together”. It is
also possible to group groups together (hierarchical structure of grouping). All ob-
jects of a group are located in the same layer.

An HMI object in a process screen is configured, and usually also assigned parame-
ter settings. The structure, text format and object representation can all be defined
during configuration if so desired. During parameterization, tags are assigned to
the object, for example texts for alarms to be displayed or numerical values for bar
heights. The parameters which are essential or optional for the HMI objects are
shown in Table 16.5.

It is advantageous to create the tags for these parameters in advance. If these are
external tags, it is recommendable to create the tags in the PLC station prior to defi-
nition of the HMI tags.

Table 16.5 Overview of screen objects and the parameters used

Category Object Necessary parameters Parameters as required

Basic object Line, ellipse, circle, rectangle,
text field, graphic view

– –

Elements Bar Tag for bar height –

I/O field Tag for input or output Function list (with configura-
tion as input field)

Symbolic I/O field Tag for text selection or input,
text list

Function list (with configura-
tion as input field)

Graphic I/O field Tag for graphic selection or
input, graphics list

Function list (with configura-
tion as input field)

Button Function list Tag for selection of inscription,
text or graphics list

Switch Tag for switch position Function list

Date/time field None (with display of system
time)

Tag for date/time, function list
(with input)

Controls Alarm view (configured alarms) Function list

Trend view Data source for displayed
trends

Function list

Recipe view Recipes Tag for recipe data record

User view (configured users and
privileges)

Function list

16 Visualization

524

16.3.9 Changing screen objects during runtime

The dynamic updating of screen objects is used to display changes or process se-
quences in process screens. For example, the level in a tank can be displayed graph-
ically depending on a process value. Predefined animations are available for the
dynamic updating of the following object properties:

b Structure: the object changes its appearance, e.g. its color

b Position: the object moves in the screen

b Visibility: the object is displayed or hidden

b Operability: operator control of an object is enabled or locked

You can only configure one animation of the same type (movement, structure,
visibility) for each object.

To configure an animation, select the object in the process screen and click in the
inspector window in the Properties tab on the Animations tab. Select a new anima-
tion by double-clicking on Add new animation in the tabbed browsing or selecting
it from the overview. When adding, specify the tag whose value is to dynamize the
object property. The new animation is displayed in the Animations tab in the inspec-
tor window.

When multiple objects have been selected, set the animations of the reference ob-
ject in the inspector window. The settings apply to all objects which support these
animations.

If you configure an animation for an object group, this animation applies to all in-
dividual objects which support this animation.

16.3.10 Basic objects for screen configuration

The Basic objects category contains the following geometric objects: line, ellipse,
circle and rectangle. The size, color, border type and filling pattern can be set de-
pending on the object.

The group also contains a text field in which you can change, for example, the text
style or the text, background and frame color, as well as a graphic view with a select-
able graphic (Fig. 16.8).

Fig. 16.8 Basic objects in the Tools task card

Line Ellipse Circle Rectangle Text field Graphics view

Basic objects for process screen configuration

A

16.4 HMI functions

525

16.4 HMI functions

16.4.1 Input and display of process values

The following screen objects are available for the input and display of process
values (Fig. 16.9):

b I/O field: Input and display of numerical values

b Symbolic I/O field: Input and display of numerical values with text support

b Graphic I/O field: Input and display of numerical values with graphic support

b Date/time field: Display of date and time

b Bar: Display of a numerical process value in the form of a bar graph

b Trend view: Display of several associated, numerical process values as a trend

The input and display of process values in association with alarms and recipes as
well as user administration are described in the following sections. How to configure
the objects can be found in Sections 16.3.8 “Working with objects in process screens”
on page 522 and 16.3.9 “Changing screen objects during runtime” on page 524.

HMI objects

The I/O field object is used for the input and display of process values. During con-
figuration, you can define the mode in which the I/O field is to work during runtime:
Input, Input/output or Output. You can set that the input remains hidden (only aster-
isks are then displayed) and you can assign an input privilege to the I/O field. Pos-
sible display formats include the decimal value with sign and decimal place,
date/time, and string. You can set a change in color depending on upper and lower
limits.

Fig. 16.9 Screen objects for input and display of process values

I/O field Symbolic I/O field

SwitchButtonDate/time field

Bar

Screen objects for input and display of process values

Graphic I/O field Trend view

http://pnap.ir/siemens-s71200-price-list/

16 Visualization

526

The Symbolic I/O field object is used for the input or output of a process value with
display of a text. If the I/O field is configured as an input field, a value is assigned to
the configured tag depending on the displayed text which is selected from a text list
during runtime. With an output field, the text stored in a text list is displayed, de-
pending on the value of a selection tag. Working with text lists is described in the
next section.

The Graphic I/O field object is used for the input or output of a process value with
display of a graphic. If the I/O field is configured as an input field, a value is assigned
to the configured tag depending on the displayed graphic which is selected from a
graphics list during runtime. With an output field, the graphic stored in a graphics
list is displayed depending on the value of a selection tag. Working with graphics
lists is described in the next section.

The Date/time field object can be used to display and enter the date and/or time.
The date/time tag can be the system time of the HMI station or an HMI tag.

The Button object is used to trigger a configurable action. A function list with sys-
tem functions can be processed depending on the event (e.g. press, release). The in-
scription can be text or a graphic, either fixed or selected from a text or graphics list.
The processing of text, graphics and function lists is described in the next sections.

The Switch object enables the selection of two configurable states. The current
state can be shown in the switch by a text or graphic. A function list with system
functions can be processed depending on events (e.g. switch ON, switch OFF).
The processing of function lists is described in the section after next.

The Bar object displays a process value in graphic form. The display properties
which can be set include: the color response (change in color on violation of limits),
the marking of limits, the division into bar segments, and the scale inscriptions and
division.

The Trend view object displays tag values in the form of trends. You can set trend
display features with regard to position, geometry, style, color and font in the in-
spector window. You can also specifically define whether a value table, a ruler or a
grid is to be displayed in addition to the coordinate system.

Working with text and graphics lists

Text lists consist of individual texts which are assigned to the values of a tag. For ex-
ample, a text list can be assigned as a selection list to a symbolic I/O field: if the
I/O field is an input field, the tag assumes a specific value when a text is selected;
if the I/O field is an output field, the corresponding text is displayed if the tag has a
specific value.

Graphics lists consist of individual graphics which are assigned to the values of a
tag. A graphic can be present in a graphics library or be an existing file in the stan-
dard file format. Graphics lists are handled like text lists.

16.4 HMI functions

527

A multilingual configuration is possible for a text or graphics list, which is dis-
played in the current operating during operation (runtime). This is meaningful
e.g. for the graphic text of a graphics list.

To create a text or graphics list, double-click in the project tree under the
HMI project on Text and graphics lists. Create the text lists in the Text lists tab, and
the graphics lists in the Graphics lists tab.

Double-click on <Add> in the table, and assign a meaningful name to the text or
graphics list. Select the list type under Selection which defines how the tag linked to
the list is to be interpreted:

b As Value/Range, then the text or graphic is displayed if the tag value is within
the range or ranges

b As Bit (0, 1); a different text or graphic is then displayed for the signal states
“0” and “1”

b As Bit number (0 to 31); texts or graphics are then assigned to the individual
bits.

Then define the list contents. Select the list and enter the values of the tags and the
text or graphics in the Entries in text/graphics list table: Double-click on <Add> to
open a drop-down dialog box which depends on the range selection for the
text/graphics list:

b If Value/Range is selected, you can select Single value and enter the value or
you select Range and specify the range; you can repeat this in the next lines
with additional ranges or values

b If Bit is selected you can enter the texts/graphics for the signal states “0” and
“1”

b If Bit number is selected you can enter the texts/graphics for the bit numbers
0 to 31

By activating Standard in the entries of the selection Value/Range and Bit num-
ber, you define the text or graphic to be output if the tag assumes an undefined
value.

In the runtime settings under Screens you can define the response when several
bits are set as the bit number: if the Bit selection for text and graphics lists check box
is activated, the text or graphic that has been configured for a set bit with the least
significance is shown. If the check box is not activated, the text or graphic that has
been configured for a single set bit only is shown. If several bits are set, the text or
graphic set as standard is then shown.

16 Visualization

528

Working with function lists

System functions are predefined functions which cannot be changed, for example
for calculating the value of a tag, for setting a bit in the PLC station, or for changing
the user.

An HMI object may have configurable events, e.g. a button has the Click event.
A function list containing the system functions can be assigned to an event, which
are then executed when the event occurs.

To configure a function list, select the object in the process screen and open the
Events group in the Properties tab of the inspector window. Select an event, click in
the function list on <Add function> and select the desired system function from the
drop-down list.

It may be necessary to supply the system function with parameters. You can assign
more than one system function to an event.

16.4.2 Working with alarms

The alarm system distinguishes between system-defined alarms which do not
require configuration and user-defined alarms which can be configured as analog
alarms (display of limit violations) or discrete alarms (display of states or status
changes).

System alarms indicate the status of the HMI station and of the communication be-
tween the HMI and PLC station. The type and number depend on the HMI station.
You can set the display duration of system alarms in the project tree under Runtime
settings and Alarms.

User-defined alarms visualize the process sequence and process states in the
machine or plant. An alarm consists of an alarm number, the time of the event
(date, time), the alarm text, the alarm status (incoming, outgoing), the alarm class,
and possibly the alarm group (Fig. 16.10).

Alarms are assigned to certain Alarm classes: System (contains system-defined
alarms for display of HMI station statuses), Errors (designed to display user-defined
alarms for critical or dangerous statuses with an acknowledgment obligation) and
Warnings (designed to display user-defined alarms for regular statuses without ac-
knowledgment). User-defined alarm classes are configured with the desired repre-
sentation and acknowledgment concept.

Alarms in an Alarm group are acknowledged together. Triggered alarm events are
saved in an alarm buffer. The Alarm view shows selected alarm events from the
alarm buffer in a process screen. If a new alarm is present, the Alarm window shows
all pending alarms or alarms awaiting acknowledgment of a particular alarm class.
With an incoming alarm, the Alarm indicator shows the defined alarm class, and
whether unacknowledged alarms or alarms which have already been acknowledged
but are still pending are still present.

16.4 HMI functions

529

Fig. 16.10 Components of the alarm system

Class GroupNumber Time stamp Status Alarm text

Alarm

1 Alarm
2 Alarm
3 Alarm

1 Alarm
2 Alarm
3 Alarm

Alarm text with output fields

Alarm text with output fields

Alarm view Alarm window Alarm indicator

Discrete alarm

Analog alarm

Variable text Variable number

Alarm system

Alarm without acknowledgment: if the alarm event arrives, the alarm is displayed
until it goes again.

Alarm with acknowledgment: if the alarm event arrives, the alarm is displayed until
it goes again and is acknowledged.

The alarm view is configured as an object in a process screen.

The alarm window is configured as a global window which opens and closes event-controlled
irrespective of the current process screen.

The alarm indicator indicates the presence of unacknowledged or pending alarms independent
of the current process screen.

An alarm can be acknowledged:

> Using the acknowledgment key in the alarm view or alarm window

> Using a button or a function key with the AlarmViewAcknowledgeAlarm system function

> Using a function key with the AcknowledgeAlarm system function.

Discrete alarms can be acknowledged by the PLC.
Acknowledgment of a discrete alarm can be sent to the PLC.

A discrete alarm indicates a status change in the process.
The change in status (the alarm event) is recorded by
a trigger tag. The trigger tag is an external HMI tag of
data type USHORT or SHORT. A trigger bit may only be
used for one alarm.

An analog alarm indicates a limit violation in the process.
The limit violation (the alarm event) is derived from a
trigger tag. The alarm event is present if the trigger tag
is above or below a configured limit which can be a constant
or a tag.

The alarm number identifies the alarm.

The time stamp shows the date and time at which the alarm was triggered.

The alarm status has the events "incoming", "outgoing" and "Acknowledge".

The alarm text describes the cause of the alarm. It can include output fields for current values
recorded at the time the status changed. These can be variable texts from a text list or
variable process values.

The alarm class defines the acknowledgment concept and the representation of an alarm.

The alarm group combines alarms with a common acknowledgment.

The components of an alarm which are to be displayed can be configured.

? ?! !

Window title

!

16 Visualization

530

Alarm statuses

Each alarm has an alarm status (Table 16.6):

b Incoming (I) the condition for triggering an alarm applies

b Outgoing (O): the condition for triggering an alarm no longer applies

b Acknowledge (A): the user has acknowledged the alarm.

The display text of the message statuses can be freely selected.

Acknowledging alarms

Alarms without an acknowledgment obligation indicate process states which are
neither critical nor dangerous. Alarms without an acknowledgment obligation
come and go without an acknowledgment.

Alarms with an acknowledgment obligation are used to ensure that the user has
registered the occurrence of an alarm. By means of the acknowledgment, the user
confirms that the status which triggered the alarm has been processed. The alarm
is displayed until it has been acknowledged. Alarms with an acknowledgment obli-
gation indicate critical or hazardous states.

An alarm can be acknowledged on the HMI station by an authorized user or auto-
matically by the system, e.g. by means of a tag value, a system function in a function
list, or the program in the PLC station.

Alarms combined in an alarm group are acknowledged together. An alarm group
can contain alarms from different classes. Examples of alarm groups are those
caused by the same fault or those from a particular machine unit or subprocess.

Table 16.6 Alarm statuses

Alarms without acknowledgment obligation

Display text Status Description

I Incoming The condition of an alarm applies.

IO Outgoing The condition of an alarm no longer applies.

Alarms with acknowledgment obligation

Display text Status Description

I Incoming The condition of an alarm applies.

IO Outgoing, not
acknowledged

The condition of an alarm no longer applies. The user has not
acknowledged the alarm.

IOA Outgoing, then
acknowledged

The condition of an alarm no longer applies. The user acknowl-
edged the alarm after this point in time.

IA Incoming, acknowledged The condition of an alarm applies. The user has acknowledged
the alarm.

IAO Outgoing, but acknowl-
edged first

The condition of an alarm no longer applies. The user acknowl-
edged the alarm when the condition still applied.

16.4 HMI functions

531

Configuring alarms

The steps for configuring alarms are as follows:

1) Create and edit alarm class (representation and acknowledgment concept)

2) If required: Create alarm groups (combination of alarms into groups that
are acknowledged together)

3) Create tags (define tags and limits which are to trigger alarms)

4) Create alarms (configure discrete and analog alarms, and assign the tags,
alarm class, alarm group etc. to be monitored)

5) Configure the alarm output (create HMI objects in process screens, and
assign alarms)

6) If required: Configure loop-in-alarm (following the arrival of an alarm,
the process screen in which the alarm event is present is selected)

To configure alarms, double-click on the HMI alarms editor in the project tree under
the HMI station.

Creating an alarm class

Select the Alarm classes tab in the HMI alarms window. The table already contains
the predefined alarm classes Errors, System, and Warnings. To enter a new alarm
class, double-clicking on <Add new> in the next line. You can specify its properties
in the inspector window as required, in particular the acknowledgment concept and
the representation. You can configure enabling for the colored representation of
the alarm classes in the project tree under Runtime settings > Alarms and General >
Alarm class colors.

Creating an alarm group

Select the Alarm groups tab in the HMI alarms window. Double-click on <Add new>
in the table to enter a new alarm group whose name you can change in the table cell
or inspector window.

Configuring a discrete alarm

Select the Discrete alarms tab in the HMI alarms window (Fig. 16.11). To enter a new
discrete alarm in the table, double-click on <Add new>. You can specify its proper-
ties in the inspector window as required.

In the General section you can assign the alarm to an alarm class as well as to an
alarm group if required. Enter the event text which is to be displayed. You can insert
tag output fields or text list output fields in the event text which display current val-
ues or selected texts when the alarm is output. To do this, use the right mouse but-
ton to select the position in the event text where the insertion is to take place, and
then select the output field in the shortcut menu. Then define the tag and the out-
put format or the text list and the selection tag in the dialog.

In the Trigger section, select the tag whose change in status is to trigger the alarm.
To do this, enter an HMI tag with the data type INT or UINT or a PLC tag with the

16 Visualization

532

data type INT or WORD and a bit number under Settings. Use this tag only as the
trigger tag.

In the Acknowledgment section you can define the HMI tag which saves whether the
alarm has been acknowledged. If the alarm is to be acknowledged by the PLC pro-
gram, the trigger tag is an external HMI tag and simultaneously also the acknowl-
edgment tag which you specify under Acknowledgment in the PLC field. Select dif-
ferent bits for triggering and acknowledging an alarm.

In the Events tab you define the functions to be executed as required for the Incom-
ing, Outgoing, Acknowledge, and Loop-in-alarm events in one function list each. For
the Loop-in-alarm, select the ActivateScreen system function and enter the screen
name of a previously configured screen.

You can also configure a discrete alarm immediately when creating an HMI tag.
Start configuration of tags using the HMI tags editor, open the HMI tags tab in the
working window, select the tag in the top table, and configure the associated dis-
crete alarm in the bottom table. The configured discrete alarm is imported into the
alarm list of the alarm editor.

Configuring an analog alarm

Select the Analog alarms tab in the HMI alarms window. To enter a new analog alarm
in the table, double-click on <Add new>. You can specify its properties in the inspec-
tor window as required.

In the General section you can assign the alarm to an alarm class as well as to an
alarm group if required. Enter the event text which is to be displayed. You can insert
tag output fields or text list output fields in the event text to display current values
or selected texts when the alarm is output. To do this, use the right mouse button
to select the position in the event text where the insertion is to take place, and then
select the output field in the shortcut menu. Then define the tag and the output for-
mat or the text list and the selection tag in the dialog.

In the Trigger section, specify the tag whose value is to be monitored for a limit, and
define the delay time: the alarm is only triggered if the trigger condition is still
present following expiry of the delay time. Specify under Mode when an alarm is to
be triggered (High limit/low limit violation), and define the limit either either as a

Fig. 16.11 Configuring discrete alarms

16.4 HMI functions

533

constant or as a tag. Synchronization indicates how the limits are synchronized
with this alarm with regard to the limits configured for the tag (configured using
the tag editor, see next section). By means of a deadband (hysteresis) you can pre-
vent repeated generation of the alarm if the tag value oscillates around the limit
(Fig. 16.12).

In the Events tab you define the functions to be executed as required for the Incom-
ing, Outgoing, Acknowledge, and Loop-in-alarm events in one function list each. For
the Loop-in-alarm, select the ActivateScreen system function and enter the screen
name of a previously configured screen.

Configuring an analog alarm using the tag editor

You can also configure an analog alarm immediately when creating an HMI tag.
Start configuration of tags using the Show all tags editor, open the HMI tags tab in
the working window, and select the tag in the top table. In the inspector window, en-
ter high and low limits in the Properties tab under Range either as constants or tags.
Configure the associated analog alarm in the bottom table in the working window.
The configured analog alarm is imported into the alarm list of the alarm editor.

Configuring the alarm output

In order to display alarms, the Basic Panels feature the alarm view as an object in a
process screen, the alarm window, and the alarm indicator.

Configuring an alarm view

An alarm view is configured in a process screen. You can configure the alarm states
(pending or unacknowledged alarms) and the alarm classes in this alarm view.

Open the process screen and drag the Alarm view object from the Tools task card
under the Control category into the screen. With the alarm view selected, you can
design its properties in the inspector window in accordance with your require-
ments. You can make various settings in the Properties tab:

Fig. 16.12 Properties of an analog alarm (trigger conditions)

16 Visualization

534

b Under General you can select the alarm states to be displayed (pending and/or
unacknowledged alarms) and activate the alarm classes to be displayed in this
alarm view.

b Under Display you can define the buttons to be shown in the alarm view (infotext,
acknowledge, loop-in alarm) and whether a scroll bar is to be present.

b Under Layout you can set the number of lines for an alarm and how many alarms
are to be visible. You can also set the position and size of the alarm view here if
you have not already done this with the mouse in the process screen. Use Layout
to define the (background) colors and, under Text format, the font size to be
used.

b Under Columns you can define the visible columns and the sorting of alarms.

Configuring an alarm window

The alarm window shows the current alarms. It is opened independent of the cur-
rent screen. The HMI station can still be used, even if alarms are present and dis-
played. An alarm window is configured in the global screen and displayed like an
alarm view.

To configure the alarm window, double-click in the project tree under the HMI
station in the Screen management folder on Global screen. The global screen
opens. It contains as standard the alarm window for unacknowledged alarms at
screen layer 1, for system alarms (active system events) at screen layer 1, and for
pending (active) alarms at screen layer 3. You can also drag an additional alarm
window from the Tools task card under the Controls category into the global
screen.

In order to be able edit the alarm window better, position it in a separate screen lay-
er, and hide the other layers (see Section 16.3.3 “Working with screen layers” on
page 519).

With the alarm view selected, you can design its properties in the inspector window
in accordance with your requirements. The settings are made as for the alarm view
(see above). You can additionally select the properties of the window (Display auto-
matically, Closable, Modal) and the inscription in the window title in the Properties
tab under Mode.

Configuring the alarm indicator

The alarm indicator indicates by means of a warning triangle that alarms are pend-
ing or require acknowledgment. The alarm indicator flashes if at least one unac-
knowledged alarm is present, and lights up continuously if at least one of the ac-
knowledged alarms is not yet gone. The number of pending alarms is displayed.

To configure the alarm indicator, double-click in the project tree under the HMI sta-
tion in the Screen management folder on Global screen. The global screen opens. It
contains the warning triangle of the alarm indicator as standard. If the alarm indi-
cator is not present, drag it from the Tools task card under the Controls category into
the open window. Only one alarm indicator is permissible.

16.4 HMI functions

535

With the alarm indicator selected, you set its properties in the inspector window:

b You select the alarm classes for the indicator in the Properties tab under General.
The alarms from these alarm classes activate the indicator during runtime. Spec-
ify whether pending alarms and/or alarms to be acknowledged are to be dis-
played by the indicator.

b In the Events tab you can define whether the ShowAlarmWindow system function
is to be executed with Click or Click when flashing.

During runtime, the alarm indicator can only be accessed per touch screen.

Configuring the acknowledgment of alarms

Whether and how an alarm is acknowledged is defined in the alarm class to which
the alarm is assigned (see Section “Creating an alarm class” on page 531). A pend-
ing alarm can be acknowledged individually or in an alarm group. Acknowledg-
ment can be performed in the following ways:

b Click the Acknowledge button in the alarm view or window.

b Configure a separate button or function key with the AlarmViewAcknowledgeAlarm
system function for the Click or Press key event, and specify the alarm view whose
alarm is to be acknowledged under Screen object.

b The acknowledgment of a discrete alarm by the PLC station, and the sending of
an acknowledgment bit to the PLC station, are described in Section “Configuring
a discrete alarm” on page 531.

If acknowledgment of alarms is only to be allowed for a limited circle of users, con-
figure a button or function key with a corresponding operator authorization
(see Section 16.4.4 “Working with the user administration” on page 539).

16.4.3 Working with recipes

Recipes include associated data, for example data for a certain production batch.
A recipe consists of recipe data records. These differ in terms of their values, but not
in their structure. A recipe data record consists of recipe elements (Fig. 16.13).

You can enter the recipe data – if known – during the configuration phase. Recipes
are saved in the HMI station and entered, modified or deleted in the recipe view
during runtime.

The displayed recipe data record can be transferred to the PLC station. A recipe data
record can also be transferred from the PLC station to the HMI station. The trigger
for this comes from a user or from the PLC station's program.

If there is a risk that recipe data could be mutually overwritten by the HMI and
PLC stations, the transfer can be synchronized by means of the Data record area
pointer.

16 Visualization

536

General procedure for configuring recipes

The structure of the recipe should be defined prior to the configuration of recipe
management: What recipe elements are required per data record? How many data
records does the recipe have? In which PLC tags are the values of the current data
record to be saved?

Then create the PLC tags or the external HMI tags. Create a new recipe, define the
recipe elements, and enter the data records with the values for each recipe element.

Configure a process screen with the recipe view. If the transfer of the current recipe
data record to the PLC station is to be synchronized, create a Data record area
pointer.

Creating a recipe

To configure a new recipe, first create the PLC tags for a recipe data record. If you
directly select the PLC tags during the configuration phase when assigning the
PLC tags to the recipe data record elements, external HMI tags are created automat-
ically. You can also create the external HMI tags in advance and then select them
during configuration. Then create the new recipe, assign recipe elements to it, and
enter the values for the elements in the data records.

Fig. 16.13 Recipe components

Data record 1

Recipe 1

External HMI tags (= recipe elements)

Data area in the PLC station

1 Recipe name 1
2 Recipe name 2
3 Recipe name 3

Recipe view

Recipe 2

Recipe n

Data record 2

Data record n

Displayed data record

(data record)

Element 1

Element 1

Element 1

Element 1

Element 1

Element 2

Element 2

Element 2

Element 2

Element 2

Element n

Element n

Element n

Element n

Element n

Recipes

…

…
…

…

…

…

A recipe is a combination of any type of
data. Each recipe can have its own data
structure.

A recipe consists of data records. Each
data record of a recipe contains the same
elements. The data records differ by the
value (the contents) of their elements.

The recipe view on the HMI device is
used to display, access and edit the
recipes. The recipe list, data record list
and element list can be displayed.

You can create, change, copy or delete a
recipe data record. A recipe data record
can be read from the PLC station or
transferred to it.

The data record area pointer is used as
necessary to coordinate the transfer of a
recipe data record between the HMI and
PLC stations.

16.4 HMI functions

537

Double-click on the Recipes editor in the project tree under the HMI station. The dis-
played recipe list has two parts: The top part Recipes lists the recipes. In the bottom
part you can enter the elements of a recipe data record in the Elements tab and in
the Data records tab you can define the number of data records in the recipe.

Create a new recipe in the Recipes table. In the properties of the recipe in the
inspector window, you define under Synchronization whether data exchange is to
be synchronized and via which HMI connection this is to be carried out. If the Coor-
dinated data transfer checkbox is activated, the Data record area pointer must be
configured.

Enter the recipe elements in the Elements table. A double-click on <Add> creates a
line with a new element. In the Tag column, assign either an external HMI tag or a
direct PLC tag to the recipe element. During runtime, these tags save the value of
the recipe element in the current recipe data record. The value in the Default value
column is used as the default entry when creating a data record. A recipe element
can be assigned a text list whose text, depending on the value of the recipe element,
is displayed during runtime in an output field. Enter as many elements as present
in a recipe data record.

In the Data records table, define the values of the recipe elements for each individ-
ual data record. A double-click on <Add> creates a line with a new data record with
a column for each recipe element. Enter the values for the recipe elements here.

Configuring a recipe view

The recipe view is an off-the-shelf display and control element used to manage rec-
ipe data records.

To configure the recipe view in a process screen, use the mouse to drag the recipe
view from the Tools task card under the Controls category into the open screen.

If you only wish to display a particular recipe in the view, enter the recipe under
General in the properties of the recipe view in the inspector window. You can specify
a tag in the Recipe data record section in which – depending on the tag's data
format – the number or name of the currently displayed recipe data record is to be
saved. If you deactivate the Editing mode check box, you can suppress the editing of
recipe data, and the data is only displayed.

You define the display of the recipe data under Simple view. Under Toolbar you can
define which buttons are to be available in the recipe view during runtime.

Operating the recipe view during runtime

You can display the list of all existing recipes, the data record list of a recipe, and
the element list for a data record in the recipe view. The view always begins with the
recipe list. Depending on the configuration, you can create a new recipe data re-
cord, modify, copy or delete an existing record, transfer a record to the PLC station,
or read a record from the PLC station.

16 Visualization

538

The values of a data record modified in the recipe view must be transferred to the
PLC station to enable them to be processed there. To carry out the transfer, open the
desired recipe and the elements list of the data record whose values you wish to
transfer. Select the Down command in the shortcut menu.

In order to read the values of a recipe data record from the PLC station, open the
recipe and the elements list of the data record whose values are to be imported from
the PLC station. Select the Up command in the shortcut menu. The new values are
displayed.

You can also assign the commands of the recipe view to another screen object. For
example, you can assign the RecipeViewSetDataRecordToPLC system function to a
button or function key.

Controlling transfer from PLC station's program

Using the Job mailbox area pointer you can read a recipe data record from the PLC
station (job number 69) or write one into the PLC station (job number 70). Work-
ing with area pointers is described in Section 16.2.3 “Creating an area pointer” on
page 515. The first parameter of the area pointer contains the recipe number, the
second parameter the data record number. During transfer from the PLC station to
the HMI station (job number 69) you can specify in the third parameter whether
the existing data record is to be overwritten (with 1) or not (with 0).

The recipe view is not updated automatically. For example, if recipe data is trans-
ferred from the PLC station while the recipe is being displayed, the new values are
only displayed when the associated data record is selected again.

Synchronized transfer to the PLC station

There are two possibilities for the transfer: transfer without synchronization and
transfer with synchronization via the Data record area pointer. You can use transfer
without synchronization if the transfer of a data record is to be exclusively trig-
gered by an operator input on the HMI station. Synchronization is necessary if the
transfer is triggered from both the HMI station and PLC station. This prevents
uncontrolled mutual overwriting of data.

If the initiative for transfer comes from the HMI station, it enters a value of 2 into
the status word, changes the recipe and data record numbers, reads or writes the
data record values, and sets the status word to a value of 4. The PLC station must
set the status word to 0 in order to enable the next transfer.

If the initiative comes from the PLC station, this must trigger the HMI station to
transfer by means of control job no. 69 or no. 70 (as described above). The further
sequence is as with the initiative from the HMI station.

A bit in the status word may only be set by the HMI station. The PLC station may on-
ly reset the status word back to 0.

16.4 HMI functions

539

16.4.4 Working with the user administration

You configure user groups, users, and authorizations with the user administration.
Authorizations restrict security-related operations to specific user groups. To do
this, set up access protection for the operating element; then only a user assigned
to a user group with the relevant access rights can perform the operation using this
object (Fig. 16.15).

Examples of user groups with different privileges include: Administrators or Service
engineers who have unlimited access, Technicians who are permitted to make set-
tings in the process or on the machine, and Operators who are responsible for the
production process.

Configuration procedure

1) User groups are defined during the configuration phase. If users are already
known at this point in time, they can be included in a user group. Users can also
be assigned to the user group during runtime by means of the User view.

2) Define privileges, and assign the corresponding privileges to each user group.

3) During configuration of the operator-accessible object, set the privilege with
which this object can be accessed in the properties under Security. This means
that a user can only operate this object during runtime if he or she is included in
the corresponding user group.

Configuring users and user groups

To configure the user administration, double-click in the project tree under the HMI
station on User administration and select the User groups tab in the working win-
dow. The Administrator group and Users user groups are always present in the top

Fig. 16.14 Structure of the Data record area pointer

Data record area pointer Value of status word

Current recipe number (1 … 999)

Reserved Transfer busy

Status (0, 2, 4, 12) Successfully completed

Reserved Completed with errors

Current data record number (1 … 65 535) Transfer permissible

Word 1 Decimal Binary Meaning

Word 2 0 0000 0000

Word 3 2 0000 0010

Word 4 4 0000 0100

Word 5 12 0000 1100

Data record area pointer

The data record area pointer is used to synchronize the transfer of a recipe data record.
It can be created in the PLC station as a tag of data type ARRAY [1..5] of UINT.

16 Visualization

540

table Groups. The privileges Operate, User administration and Monitor are always
present in the lower Privileges table.

To enter a new privilege, double-click on <Add> in the Privileges table. You can set
the privilege properties in the inspector window. The name and number must be
unique in the HMI station. The name of a privilege is freely-selectable, but should
indicate the access privilege. The name is displayed in the user administration.
Explain the privilege in the comment field.

To enter a new user group, double-click on <Add> in the Groups table. Set the user
group properties in the inspector window. The name and number must be unique
in the HMI station. The name of a user group is freely-selectable, but should indi-
cate the group characteristics. The name is displayed in the user administration.
Describe the user group in the comment field.

Fig. 16.15 User administration elements

User 1 User group 1
User 2
User 3

User group 2
User group 3

User view

User 1 Password 1

User 2 Password 2

User 3 Password 3

User group 1

Operator-accessible
object 1

Operator-accessible
object 2

Operator-accessible
object 3

Privilege 1

Privilege 1 Privilege 2 Privilege 3

Privilege 2

Privilege 2 Privilege 3

Privilege 1

Privilege 3

User group 2

User group 3

User administration

An HMI station is provided with access protection which protects against unauthorized operation
during runtime. Safety-related operations can be restricted to special user groups.

The user view is used to
administer the users during
runtime (create and delete
users, assign privileges).

Each user has a password.
Each user is assigned to a user group.
A user can have any name.

A privilege is assigned to each operator-
accessible object during configuration.
Different objects can have the same privileges.
A privilege can have any name.

Privileges are assigned to each user group. Several privileges can be assigned to a user group.
A user group can have any name.

If a user logs in with his or her password during runtime, the user group to which he or she is
assigned allows him or her to access those objects which have the same privileges.

On

16.4 HMI functions

541

To assign privileges to a user group, select the user group and activate the corre-
sponding privileges in the Active column in the Privileges table.

In the Users tab, configure the users in the top table Users. One user Administrator
is already present. Double-click on <Add> and enter the properties of the next user
in the inspector window. The name and number must be unique in the HMI station.
Assign a password and confirm it. A user can change his or her own password
during runtime.

To assign the user to a user group, select the user and then the user group in the
Member of column in the Groups table. You can assign a user to exactly one user
group. In the inspector window, you can set in the user properties under Automatic
logoff the number of minutes after which automatic logging off is to take place.

Configuring access protection for control elements

The privileges created in the user administration must be assigned to the control
elements protected against unauthorized access. Objects with access protection are
the date/time field, the I/O field, the graphic and symbolic I/O fields, the switch, the
button, and the recipe view.

In order to configure access protection for a control element, open the process
screen and select the control element. In the inspector window, select the privilege
under Properties and Security, and define whether operator access is permissible.

Configuring the user view

The user view is used to configure and administer users and privileges during run-
time. The user view is configured in a process screen. Open the screen and use the
mouse to drag the user view from the Tools task card under Controls into the screen.
Set the user view properties in the inspector window.

Runtime settings for user administration

Use the Runtime settings editor under an HMI station in the project tree to configure
the security settings of the user administration during runtime. Start by double-
clicking on the editor, and select the User administration section in the runtime set-
tings.

Under General you set the number of permissible invalid login attempts by a user
before the user is assigned to the Unauthorized group. If the Logon only with pass-
word checkbox is activated, users are not required to enter a user name when log-
ging in.

Under Hierarchy level you can activate the group-specific privileges for the user ad-
ministration. This means that an administrator can only administer those users
during runtime whose group number is smaller than or equal to his or her own
number, and only assign a user to a user group whose number is smaller than or
equal to his or her own group number.

16 Visualization

542

Under Password, you can activate the password aging. You can set the number of
days for which a password is valid, and the preliminary warning time before a
change in password becomes necessary. Password generation is understood to be
the number of past passwords before a certain password can be repeated. With
password aging activated, the Password aging column can be edited for the user
groups (User administration editor in the Users tab and Groups table).

Under Password complexity you can set the minimum password length and also
specify whether a password must contain digits and/or special characters.

16.5 Completing HMI configuration

16.5.1 Compiling the HMI configuration (Consistency test)

The entered configuration data must be compiled so that execution in the HMI sta-
tion is possible. During configuration the data is compiled continuously in the
background. Further compilation takes place automatically when downloading to
the HMI station.

You can also compile the configuration data in between times in order to check its
consistency. The faulty positions are listed in the inspector window and can be direct-
ly selected by double-clicking on the error message in order to eliminate the error.

To compile the entire configuration data for an HMI station, select the station
and then the Compile > Software (rebuild all) command in the shortcut menu. The
Compile > Software command is used to compile only the configuration data which
has been changed since the last compilation. If the PLC tags were changed during
compilation of the HMI device, or if new ones have been added, it is advisable to also
compile the corresponding data blocks in the PLC station prior to compilation of
the HMI configuration.

16.5.2 Simulation of HMI configuration

You can use the simulator on the programming device to test the response of the
HMI configuration. The simulation can be carried out together with the PLC station
or with the tag values of a simulation table, in the latter case without a PLC station.

To carry out the simulation, select the HMI station in the project tree and then the
Online > Simulation > … command from the main menu.

The command Online > Simulation > Start starts the simulation with the networked
PLC station. The simulator program establishes a connection to the active PLC sta-
tion and imports its tag values for the simulation. The configured process screens
are displayed in the simulator window. Use the mouse for operations instead of the
touch screen and function keys.

The command Online > Simulation > With tag simulator starts the simulation with
simulation table. Two windows are opened: simulation of the HMI configuration

16.5 Completing HMI configuration

543

(display of the process screens) and the simulation table. Use the <Alt + Tab> key
combination to switch between the two windows.

Enter all tags in the simulation table with which you wish to simulate the HMI con-
figuration. The Format column defines the display format, the Set value column the
start value. In the Simulation column, select the type of simulation, e.g. Increment,
from the drop-down list. Enter the value by which the tag value is to change in the
Cycle column. Define the rate of change in the Write cycle column: the value entered
corresponds to the interval in seconds with which the tag value is to be changed.
In the MinValue and MaxValue columns you can define the range of values for tags.
In order to carry out simulation with a tag, activate the Start check box.

Depending on the data type of the tag, the simulator provides six different modes
(Fig. 16.16):

b Sinus: changes the value in the form of a sinusoidal curve

b Random: provides randomly generated values

b Increment: increases the tag value commencing with the start value up to the
maximum value, and commences again with the minimum value

b Decrement: decreases the tag value commencing with the start value down to the
minimum value, and commences again with the maximum value

b Shift bit: shifts a set bit continuously by one position

b <Display>: shows the current tag value in static form

You can save the settings of the simulation table using the menu command File >
Save. Several simulation tables with different contents can be saved. Use File > Open
to open a saved simulation table again.

16.5.3 Downloading configuration to the HMI station

You have created a project with a PLC and an HMI station. The PLC and HMI station
are networked and prepared for data exchange with at least one HMI connection.
The user program in the PLC station is complete, compiled, and downloaded to the
PLC station (Chapter 13.2 “Transferring project data” on page 425). Configuration

Fig. 16.16 Example of a simulation table

16 Visualization

544

of the HMI station has been completed, the configuration data has been compiled,
and – as far as possible – successfully simulated.

Preparation for loading the configuration data

The standard settings for loading are defined in the properties of the HMI station.
Select the HMI station in the project tree and then the Properties command in the
shortcut menu. The settings which you already made when networking the PLC sta-
tion are present in the properties window in the Ethernet addresses section.

You can assign an IP address online to an HMI station if you start the Online & diag-
nostics editor in the project tree under the HMI station. You set the IP address and
subnet mask in the working window under Functions and Assign IP address. Use the
Assign IP address button to transfer the settings to the HMI station.

Checking the connection data on the HMI station

You can check the connection settings on the HMI station in the Control Panel. If
you start the HMI station (connect the power supply) the loader window is displayed
during booting. If configuration data is already loaded and the root screen is dis-
played, terminate the runtime (the current program on the HMI device) using a cor-
respondingly configured function key or using the system screen Different jobs in
order to display the loader window.

Click in the loader window on the Control Panel button. Briefly click twice to reach
the next dialogs in the Control Panel: Profinet and Transfer contain the network set-
tings, e.g. the IP address. To change an entry, click on the associated field and enter
the new value using the on-screen keyboard which appears. Exit the Control Panel
by clicking on the exit cross at the top right in the title bar.

Downloading configuration data

To download, select the HMI station in the project tree and choose the command
Download to device > Software (all) from the shortcut menu. In the Extended down-
load to device dialog, you can specify the IP address of the HMI station to be loaded
to (Fig. 16.17).

The configuration data is compiled on downloading. Displayed warnings do not
prevent downloading; the function may be restricted at runtime. If there are errors,
the configuration data is not loaded. Clear any faults before trying to download
again.

After successful compilation, the downloading preview is displayed. You see the
individual loading steps and can change specific settings as required. If the com-
pilation is completed without errors – and you have activated the settings to over-
write the user administration and recipe data, if required – click on the Load but-
ton. The messages that appear during loading are displayed in the inspector win-
dow in the Info tab.

16.5 Completing HMI configuration

545

Any program running on the HMI station is exited when downloading is started,
and the transfer window appears displaying the progress. Following successful
downloading, the operating program is started automatically (if so configured).

The loader window is displayed in the case of an HMI station which is not in run-
time, for example following startup without configuration data. In this case you
must prepare the HMI station for downloading: click the Transfer button on the
HMI station before you continue downloading by means of the Download button on
the programming device. The HMI station then shows the downloading progress in
the transfer window.

Updating the operating system during downloading

When downloading the configuration data, a check is carried out to establish
whether the configured operating system version of the HMI station agrees with
the version upon which the configuration software is based. If this is not the case,
it is possible to immediately update the operating system version during down-
loading.

Note that the recipe and user data in the HMI station could be inadvertently deleted
when updating the operating system. Save this data if necessary, and then start the
download procedure again with updating of the operating system. Restore the
saved data after updating.

Fig. 16.17 Downloading to an HMI station

16 Visualization

546

Saving and restoring are described in the next Section 16.5.4 “Maintenance of the
HMI station”. Updating of the operating system can also be carried out independent
of downloading.

Starting the HMI station

Following successful downloading of the configuration data, the runtime starts fol-
lowing a certain delay, if so configured. You can configure the delay time on the
HMI station: click in the loader window on the Control Panel button, double-click in
the Control Panel on OP, and set the delay time in seconds in the OP properties
window in the Display tab (click on the input field).

The runtime also starts if you click on the Start button in the loader window.

16.5.4 Maintenance of the HMI station

Maintenance of the HMI station comprises the following functions:

b Save configuration data of HMI station

b Restore configuration data of HMI station

b Authorization/licensing (does not apply to Basic Panels)

b Update operating system

b Options (does not apply to Basic Panels)

To start a maintenance function, select an HMI station and use the main menu com-
mand Online > Device maintenance > … in the project tree.

Data backup

Using a connected programming device you can save the following HMI station
data: Complete backup (all data including operating system), recipes, and user
administration (Fig. 16.18).

Fig. 16.18 Saving configuration data and operating system

16.5 Completing HMI configuration

547

Start STEP 7 Basic, open the project with the HMI station whose data is to be saved,
and select the HMI station in the project tree. Check that the settings for down-
loading are correct in the properties of the HMI station (in the Properties shortcut
menu, and then select the Download section).

In the main menu, select Online > HMI device maintenance > Backup. Perform the
save operation for the desired data type. To restore the data, select Online > HMI
device maintenance >Restore in the main menu.

Updating the operating system of the HMI station

When updating the operating system, all data on the HMI station is deleted.
You must save the data for recipes or user administration if you wish to use them
again following updating of the operating system.

Start the operating system update by selecting an HMI station in the project tree
and choosing Online > HMI device maintenance >Update operating system from the
main menu.

A connection to the HMI station is established using the Device status button. The
relevant device data is displayed: the boot loader and operating system versions as
well as the sizes of the flash and RAM memories.

If you wish to reset the HMI station to the default settings, e.g. because updating of
the operating system was interrupted, activate the Reset to default settings check
box in the ProSave window.

17 Appendix

548

17 Appendix

17.1 Integral and technological functions

17.1.1 High-speed counter (HSC)

Contrary to a counter function, a high-speed counter (HSC) counts pulses inde-
pendent of the cycle time of the user program. A counting frequency up to
200 kHz is possible. The counting range corresponds to the range of values of a
DINT tag (–2 147 483 648 to +2 147 483 647).

A high-speed counter is an integral component of the CPU and must be activated
and configured prior to use. The number of available high-speed counters
depends on the CPU: three counters for the CPU 1211, four counter for the CPU
1212, and six counters for the CPU 1214 and CPU 1215. The number of high-speed
counters with the CPU 1211 and CPU 1212 can be increased by using a signal
board with digital input channels.

A high-speed counter can be used as a single-phase or two-phase counter (A/B
quadrature). Please note that – depending on the operating mode – specific input
channels are permanently assigned to a high-speed counter and that this may re-
sult in limitations when using the counter. The assignment of the counter inputs af-
fects the peripheral inputs (the input terminals). A change in the (logical) input ad-
dresses has no influence on this assignment.

With correspondingly designed signal boards, the maximum counting frequency
of 100 kHz achievable with the onboard inputs of the CPU can be increased to
200 kHz.

The data required for execution of a counter function is saved in a data block. When
calling the counter function as a single instance, this is a separate data block per
call, when calling as a local instance in a function block, the instance data block of
the function block can be used for data saving (multi-instance).

Assignment of inputs to high-speed counters

Depending on the operating mode, specific inputs integrated on the CPU or on the
signal board are assigned to a high-speed counter (Table 17.1). If a counter uses the
inputs, they cannot be used elsewhere. Unused inputs can be used like “normal”
inputs for other purposes. Inputs used by a high-speed counter cannot be forced
(assigned a fixed value).

As the table shows, the assignable inputs of HSC 1 and HSC 2 (I 0.1, I 0.3) as well as
of HSC 3 and HSC 4 (I 0.5, I 0.7) overlap, meaning that not all counters can be used
in every mode. If both counters are to be used in each case, it is possible to change

17.1 Integral and technological functions

549

back to the inputs of the signal board or adapt the operating modes. For example,
control of the counting direction and resetting can also be carried out with the
CTRL_HSC statement as an alternative to the external inputs.

Fig. 17.1 shows which inputs and outputs are used by a high-speed counter depend-
ing on the operating mode.

Table 17.1 Assignment of onboard inputs to counters (without signal board)

CPU input HSC No. For single-phase
counter mode

For two-phase
counter mode

For A/B quadrature
mode

I 0.0 HSC 1 Clock input Clock input up Clock phase A

I 0.1 HSC 1
HSC 2

Direction
Reset

Clock input down
Reset

Clock phase B
Clock phase Z

I 0.2 HSC 2 Clock input Clock input up Clock phase A

I 0.3 HSC 1
HSC 2

Reset
Direction

Reset
Clock input down

Clock phase Z
Clock phase B

I 0.4 HSC 3 Clock input Clock input up Clock phase A

I 0.5 HSC 3
HSC 4

Direction
Reset

Clock input down
Reset

Clock phase B
Clock phase Z

I 0.6 HSC 4 Clock input Clock input up Clock phase A

I 0.7 HSC 3
HSC 4

Reset
Direction

Reset
Clock input down

Clock phase Z
Clock phase B

I 1.0 HSC 5 Clock input Clock input up Clock phase A

I 1.1 HSC 5 Direction Clock input down Clock phase B

I 1.2 HSC 5 Reset Reset Clock phase Z

I 1.3 HSC 6 Clock input Clock input up Clock phase A

I 1.4 HSC 6 Direction Clock input down Clock phase B

I 1.5 HSC 6 Reset Reset Clock phase Z

Fig. 17.1 Inputs and outputs of a high-speed counter

Single-phase counter

Two-phase counter,
A/B quadrature

Clock input

Reset

Direction

Reset

Clock input 1

Clock input 2

Actual count value = reference value

Change in counting direction

External reset

Actual count value

Inputs and outputs of a high-speed counter (HSC)

Pulse train

Pulse train 1 or phase A

In the peripheral
input area

Process interrupt
event

Process interrupt
event

Process interrupt
event

Alternatively: external
counting direction control

Pulse train 2 or phase B

Optional: external setting
to the initial count value

Optional: external setting
to the initial count value

17 Appendix

550

Operating modes of a high-speed counter

Fig. 17.2 shows the possible counting modes of a high-speed counter.

Single-phase counter: the counter is controlled by a single pulse train. The counting
direction is specified either internally with the CTRL_HSC statement or externally
via an input. Each rising edge of a pulse increases or decreases the count value de-
pending on the actual counting direction.

Two-phase counter: The counter is controlled by two independent pulse trains, one
for the up counting direction and one for the down counting direction. Each rising
edge of a pulse increases or decreases the count value depending on the pulse train.
Please note that with the first pulse of the other input in each case, there is a change
in the counting direction and therefore – if activated – the associated process inter-
rupt will be triggered.

A/B quadrature with single speed: The counter is controlled by two pulse trains offset
by 90° (“Phase A” and “Phase B”). If the pulse train of phase B has signal state “0”
(“between” the pulses), counting is enabled: then each rising edge of the pulses of
phase A results in an increase in the count value, and each falling edge a decrease.

A/B counter with quadruple speed:The counter is controlled by two pulse trains off-
set by 90° (“Phase A” and “Phase B”). Each edge of each pulse train is counted.

Fig. 17.2 Operating modes of a high-speed counter

Operating modes of a high-speed counter (HSC)

Single-phase counter

Two-phase counter

A/B quadrature (1x)

A/B quadrature (4x)

Clock input

Clock input up

Clock phase A

Clock phase A

Clock input down

Clock phase B

Clock phase B

Counts one pulse
with counting
direction up

Counts one pulse
with counting
direction down

Counts one pulse
with the set counting
direction

http://pnap.ir/siemens-s71200-price-list/

17.1 Integral and technological functions

551

Functional principle of a high-speed counter

A high-speed counter can be operated with three counting modes: counting,
frequency meter or motion axis.

Pulses are counted in the Counting mode, either from one or two pulse trains de-
pending on the operating mode. With only one pulse train for the counter input,
the counting direction is controlled either internally or externally by an input. The
initial count value and a reference value can be defined. The count value can be re-
set to the initial value via an input or per program. A fast counter in Counting mode
delivers the actual count value as well as interrupt events if the actual count value
is equal to the reference value, if the counting direction is changed, and if the
counter is reset externally.

The number of changes in the count value per time interval is counted in the
Frequency mode. The frequency value output is a mean value over the time interval.
With only one pulse train for the counter input, the counting direction is controlled
either internally or externally by an input. The measuring period (the time interval)
can be defined. A fast counter in Frequency mode delivers the mean value of the fre-
quency over the measured period as well as interrupt events if the actual count val-
ue is equal to the reference value, if the counting direction is changed, and if the
counter is reset externally.

In the Motion axis mode, the high-speed counter is used by the technological object
Axis and therefore cannot be used for other purposes (applies to counters HSC 1
and HSC 2).

Actual count value

The current count value is not made available as a block parameter at the counter
box, but is stored by the counter in the process image input (Table 17.2). Note,
however, that the actual count value is no longer up-to-date when it is read and
processed by the user program if the counter is counting at high speed.

A comparison between the actual count value and a “target value” can be carried
out indirectly by loading the “target value” as a reference value and – when the “tar-
get value” has been reached – evaluating the attainment of the “target value” in the
interrupt routine (react accordingly) and loading a new reference value (the next
“target value”).

The mean value of the frequency is output in Hertz (changes per second) in the
Frequency mode, independent of the time interval of the measuring period.

Table 17.2 Memory addresses for the current count values of the high-speed counters

High-speed counter
HSC

1 2 3 4 5 6

Current count value in %ID1000 %ID1004 %ID1008 %ID1012 %ID1016 %ID1020

17 Appendix

552

Configuring a high-speed counter

A high-speed counter must be activated using the hardware configuration editor.
In order to configure a high-speed counter, start the Device configuration editor un-
der the PLC station in the project tree. Select a high-speed counter in the properties
of the CPU module in the inspector window, and activate it using the Enable this
high-speed counter for use check box.

You set the counting mode (counting, frequency, or axis of motion) under Func-
tion and under Operating phase you set the manner in which the count pulses are
to be made available and counted (single-phase, two-phase, A/B counter 1X, A/B
counter 4X). If a signal board is plugged in, you can select the input source (inte-
grated CPU input, signal board input) for the HSC 1, HSC 2, HSC 5, and HSC 6
counters. The inputs of a counter (counter input, direction input, reset input) are
either all on the CPU or all on the signal board. If you have selected Single-phase
for the operating phase, set under Counting direction is specified by whether the
counting direction is to be defined by the user program (internal direction con-
trol) or by an input (external direction control). Define the initial counting direc-
tion.

Under Reset to initial values you can define the initial count value and the initial ref-
erence value and define whether resetting to these values is to be carried out by an
external input and at which signal level. Resetting is active for as long as the set sig-
nal level is present. You can change the initial count value and the reference value
during runtime using the CTRL_HSC statement.

Under Event configuration you can set the event at which the counter is to generate
a process interrupt, as well as the name of the interrupt event. The events are:
Generate interrupt for counter value equals reference value event, Generate interrupt
for external reset event and Generate interrupt for direction change event. Provide the
event with a name, and assign a process interrupt organization block to it.
The HW interrupt drop-down list contains all previously created organization
blocks with the start event Hardware interrupt. You can create a new process inter-
rupt OB using the Add object button.

Hardware inputs lists those inputs occupied by counters, together with the maxi-
mum achievable counting frequency.

Under I/O addresses/HW identifier you can set the addresses of the peripheral inputs
at which the counter is to output the actual count value. In the Process image
drop-down list you can set whether the transfer is to be to the input process image
(Cyclic PI). The hardware ID of the counter is also specified in this tab (HW ID); use
this for assigning the configured counter to the CTRL_HSC statement on the
HSC parameter.

CTRL_HSC statement

The CTRL_HSC statement controls a high-speed counter. CTRL_HSC can be found
in the program elements catalog under Technology and Counters. To call the state-
ment, drag CTRL_HSC with the mouse into the open block. Each CTRL_HSC call

17.1 Integral and technological functions

553

requires an instance data record, which can be either in a separate block (single
instance) or – if the call is made in a function block – in the instance data block of
the calling function block (multi-instance).

The CTRL_HSC is executed if “1” is present at the enabling input or if “current” flows
into the EN input or if EN is not connected. The enabling output ENO is then “1”.
If execution of the function is not enabled (EN = “0”) or if an error occurs during ex-
ecution of the statement, ENO is set to signal state “0”.

The HSC ID can be found either in the System constants tab in the default tag table
or the properties of the CPU in the High-speed counters (HSC) group under the
activated and applied counter under General and Name. At the HSC parameter,
enter this name or select it from the drop-down list. You can also specify the
numerical value of the HSC ID, which is shown in the System constants tab or in
the counter properties under Hardware ID, as a constant or variable.

With signal state “1”, the DIR parameter sets the counting direction which is speci-
fied on the NEW_DIR parameter (+1 = up, –1 = down). Signal state “0” on the DIR pa-

Fig. 17.3 Call box for a high-speed counter HSC

CTRL_HSC

PERIOD

HSC

NEW_DIR

DIR

NEW_CV

CV

NEW_RV

RV

NEW_PERIOD

BUSY

STATUS

Controlling a high-speed counter (HSC)

Instance data A high-speed counter (HSC) is a function integrated in the
CPU module. A high-speed counter permits the counting of
pulses and a frequency measurement up to 100 kHz or 200 kHz.

The CTRL_HSC statement controls a high-speed counter.
Calling of CTRL_HSC requires an instance data record which
can be either in a separate data block (single instance) or
in the instance data block of the calling function block
(multi-instance).

DeclarationName

EN

ENO

HSC

DIR

CV

RV

NEW_RV

PERIOD

NEW_PERIOD

NEW_DIR

BUSY

NEW_CV

STATUS

-

-

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

INPUT

OUTPUT

BOOL

BOOL

HW_HSC

BOOL

BOOL

BOOL

DINT

BOOL

INT

INT

BOOL

DINT

WORD

Enabling input

Enabling output

HSC ID (1 ... 6, is created when activating the HSC)

Set a new counting direction (with signal state “1”)

Set a new count value (with signal state “1”)

Set a new reference value (with signal state “1”)

New reference value

Set a new time interval (with signal state “1”)

New time interval

New counting direction (+1 = up, –1 = down)

Job being processed (with signal state “1”)

New count value

Job status

DescriptionData type

17 Appendix

554

rameter has no effect. The parameter is only effective if the counter is configured
with internal specification of the counting direction.

With signal state “1”, the CV parameter sets the count value to the initial count val-
ue which is specified on the NEW_CV parameter. Signal state “0” on the CV param-
eter has no effect.

With signal state “1”, the RV parameter sets the reference value to the value which is
specified on the NEW_RV parameter. Signal state “0” on the RV parameter has no ef-
fect.

With signal state “1”, the PERIOD parameter sets the time interval for the measur-
ing period to the value which is specified on the NEW_PERIOD parameter. Signal
state “0” on the PERIOD parameter has no effect. The PERIOD parameter is only ef-
fective if the counter is configured with the Frequency counting mode.

The BUSY parameter shows with signal state “1” that a triggered job is still being
processed following completion of the CTRL_HSC statement (should not occur with
the high-speed counters of a CPU 1200). The STATUS parameter shows the job sta-
tus and specifies any error messages.

17.1.2 Pulse generator

A pulse generator generates pulses at a special 24-V output channel. The max. fre-
quency is 100 kHz, or 200 kHz when using an appropriately designed signal board.

A pulse generator is an integral component of the CPU and must be activated and
configured prior to use. Four pulse generators are available per CPU with firm-
ware version V3.0. A signal board (SB) with digital output channels is required for
CPUs with relay outputs. A pulse generator has two modes of operation: PTO
(pulse train output) and PWM (pulse-width modulation).

PTO mode

A pulse generator in PTO mode is required for the technological object Axis.
The data achievable in this mode are:

b Minimum frequency 2 Hz

b Maximum frequency 100 kHz (pulse input in CPU), 20 kHz (pulse input in a stan-
dard signal board), and 200 kHz (pulse input in a “high-speed” signal board),

b Minimum change in frequency (acceleration/deceleration) 0.28 Hz/s

b Maximum change in frequency (acceleration/deceleration) 9500 MHz/s

PWM mode

The data required for the control function of a pulse generator in PWM mode is saved
in a data block. When calling the control function as a single instance, this is a sepa-
rate data block per call, when calling as a local instance in a function block, the in-
stance data block of the function block is used for data saving (multi-instance).

17.1 Integral and technological functions

555

The type of output pulses is defined during configuration of the pulse generator.
The period is defined by the configuration (time base, cycle time); the pulse width
can be changed during runtime. It is specified in units of the pulse width format:
as hundredths (percent, 0 to 100), as thousandths (0 to 1000), as ten thousandths
(0 to 10 000) or in S7 analog format (0 to 27 648). A value of 0 means that no pulse
is output (the output is always “0”), the maximum value means that the output is
always “1”.

You enter the initial pulse width during configuration. The pulse width can be
changed during runtime. When changing from STOP to RUN, the configured initial
pulse width is entered in an output word (Table 17.3).

The CTRL_PWM statement is used to activate and deactivate the pulse generator in
PWM mode.

Outputs assigned to the pulse generators

The pulse generators are assigned to specific digital outputs depending on the
operating mode. The address data in Table 17.3 corresponds to the standard con-
figuration. Please note that the pulse output is assigned to the peripheral output
(the “output channel”). The pulse output cannot be connected to a different out-
put channel by assigning a different (logical) address. If an output is not used for
a pulse generator, it is available for other purposes. The force function cannot be
used for the digital outputs assigned to a pulse generator.

Configuring a pulse generator

A pulse generator must be activated using the hardware configuration editor. In or-
der to configure a pulse generator, start the Device configuration editor under the
PLC station in the project tree. Select a pulse generator in the properties of the CPU

Table 17.3 Inputs and outputs for the pulse generators

Pulse generator in the operating mode PTO 0 PTO 1 PTO 2 PTO 3

on the CPU
Pulse output
Direction output

%Q0.0
%Q0.1

%Q0.2
%Q0.3

%Q0.4 1)
%Q0.5 1)

%Q0.6 2)
%Q0.7 2)

on the signal board
Pulse output
Direction output

%Q4.0
%Q4.1

%Q4.2
%Q4.3

%Q4.0
%Q4.1

%Q4.2
%Q4.3

Output of the pulse width %QW1000 %QW1002 %QW1004 %QW1006

Pulse generator in the operating mode PWM 0 PWM 1 PWM 2 PWM 3

Pulse output on the CPU %Q0.0 %Q0.2 %Q0.4 1) %Q0.6 2)

Pulse output on the signal board %Q4.0 %Q4.2 %Q4.1 %Q4.3

1) Not with CPU 1211C
2) Not with CPU 1211C and CPU 1212C

17 Appendix

556

module in the inspector window, and activate it using the Enable this pulse genera-
tor for use check box.

You set the operating mode under Parameterization: PTO, e.g. if it is to be config-
ured for a technology object Axis, or PWM. The integral CPU output can be speci-
fied as the output source or – if present – the output of the signal board. In PWM
mode you also set the pulse shape (pulse width) here.

The assigned pulse output is shown under Hardware outputs and, in PTO mode, also
the direction output and the high-speed counter used for the technological object
Axis.

The HW ID for the pulse generator is shown under Hardware ID. In PWM mode, the
output addresses used are also shown for the pulse width under I/O addresses.

CTRL_PWM statement

The CTRL_PWM statement activates and deactivates a pulse generator integrated in
the CPU in PWM mode (Fig. 17.4). CTRL_PWM is present in the program elements
catalog under Extended statements and Pulse. To call the statement, drag
CTRL_PWM with the mouse into the open block. Each CTRL_PWM call requires an
instance data record, which can be either in a separate block (single instance) or –
if the call is made in a function block – in the instance data block of the calling func-
tion block (multi-instance).

You create the ID for the pulse generator at the PWM parameter. These can be
found either in the System constants tab in the default tag table or the properties
of the CPU in the group of the activated and applied pulse generator under Gen-
eral and Name. At the PWM parameter, enter this name or select it from the drop-
down list. You can also specify the numerical value of the PWM ID, which is shown
in the System constants tab or in the pulse generator properties under Hardware
ID, as a constant or variable.

Fig. 17.4 CTRL_PWM statement

CTRL_PWM

PWM

ENABLE

BUSY

STATUS

Controlling a pulse generator in PWM mode

DeclarationName

EN

ENO

PWM

ENABLE

BUSY

STATUS

–

–

INPUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

HW_PWM

BOOL

BOOL

WORD

Enabling input

Enabling output

PWM ID

Activate pulse generator with “1”

Job being processed with “1”

Job status

DescriptionData typeInstance data

Calling up the statement CTLR_PWM requires an instance data set, which is either in its own data
lock (single instance) or in the instance data block of the calling function block (multi-instance).

A pulse generator is a function integrated in the CPU module. In PWM mode (pulse-width
modulation) it is controlled by the CTRL_PWM statement.

17.1 Integral and technological functions

557

If signal state “1” is present on the ENABLE parameter, the pulse generator is in
operation (pulses are being generated); no pulses are generated with signal state
“0” and in the STOP operating mode.

17.1.3 Technology objects for motion control

The technology objects TO_Axis_PTO and TO_CommandTable_PTO are available in
a CPU 1200 for controlling and monitoring stepper motors and servomotors with
pulse interface.

The technology object TO_Axis_PTO (“Axis”) is the interface between the user pro-
gram and the drive. The motion control statements in the user program process
the technology object. The technology object TO_CommandTable_PTO allows you
to create motion profiles for a drive that is controlled with TO_Axis_PTO.

In a CPU 1211C, 1212C and 1214C, a maximum of two TO_Axis_PTO technology
objects can be configured, in a CPU 1215C a maximum of four technology objects.
A TO_Axis_PTO technology object requires a pulse generator in PTO mode. One
24 V output channel is required per drive; a signal board (SB) with a digital output
channel must therefore be present for CPUs with relay outputs. An input channel
with interrupt capability is required if a reference point switch is used.

Configuring the technology object TO_Axis_PTO

The Axis technology object requires an activated pulse generator in PTO mode.
You activate and configure the pulse generator in the properties of the CPU in the
hardware configuration (see Chapter 17.1.2 “Pulse generator” on page 554).

The Technology objects folder in the project tree under the PLC station contains
the technology objects. Double-click on Add new object to generate a new technol-
ogy object. In the dialog window, select the Motion button and then TO_Axis_PTO.
The technology object stores the instance data in a data block whose number you
can set. If the Add new and open checkbox is activated, the technology object is
opened for configuration. Click OK.

A technology object is stored in the project tree in the Technology objects folder.
The axis contains the entries Configuration, Commissioning, and Diagnostics. Dou-
ble-click on Configuration to open the configuration window (Fig. 17.5). In the
working window, select the desired parameter range and enter the configuration
data for the axis.

To control an axis in the user program, the statements referred to in Section “Pro-
gramming the Axis technological axis” on page 559 are available.

Configuring the technology object TO_CommandTable_PTO

With TO_CommandTable_PTO you can configure a command table for a motion
sequence. Double-click on Add new object in the Technology objects folder to create
a new technology object. In the dialog window, select the Motion button and then
TO_CommandTable_PTO. The technology object stores the instance data in a data

17 Appendix

558

Fig. 17.5 Configuring the technology object TO_Axis_PTO

Fig. 17.6 Configuring the technology object TO_CommandTable_PTO

http://pnap.ir/siemens-s71200-price-list/
http://pnap.ir/siemens-s71200-price-list/

17.1 Integral and technological functions

559

block whose number you can set. If the Add new and open checkbox is activated,
the technology object is opened for configuration. Click OK.

To configure the command table, double-click Configuration in the project tree
under the command table used. In the configuration window, enter the motion
profile (Fig. 17.6).

For a motion sequence, the commands listed in Table 17.4 are available. Either
“Complete job” (the axis decelerates to a stop) or “Continue movement” (the axis
maintains speed) can be configured as a completion of a positioning command.

The commands in the command table are implemented in the user program with
the statement MC_CommandTable.

Programming the Axis technological axis

You control the Axis technology object and thus the drive with the user program
using the motion control statements. The statements are available in the program
elements catalog under Technology and Motion control. To call a statement, drag it
with the mouse into the open block. Each call requires an instance data record,
which can be either in a separate block (single instance) or – if the call is made in a
function block – in the instance data block of the calling function block (multi-
instance). Fig. 17.7 shows the calls of the motion control statements.

MC_Power enables and disables an axis for motion control.

MC_Reset resets all errors, and acknowledges all errors which can be acknowl-
edged.

MC_Home sets a homing point, i.e. the (mechanical) positioning system of
the axis is matched with the (logical) coordinate system in the controller.

MC_Halt aborts all movements and stops the axis.

MC_MoveAbsolute starts a positioning motion of the axis to an absolute position.

MC_MoveRelative starts a positioning motion of the axis relative to
the start position.

Table 17.4 Commands for the motion control of a axis

Command Action

Positioning Absolute The axis is moved at the configured speed to the specified position.

Positioning Relative The axis is moved the specified distance at the specified speed.

Velocity Setpoint The axis is moved at the specified speed for the specified duration.

Hold The axis is stopped (only after a Velocity Setpoint command).

Wait There is a wait of the specified time between two commands.

Empty This command is used as a placeholder for any other command

Separator This command separates different motion profiles in the command table.

17 Appendix

560

MC_MoveVelocity starts the axis with the defined velocity.

MC_MoveJog starts the axis in jog mode for testing and commissioning.

MC_ChangeDynamic changes the dynamic settings of an axis of motion.

MC_CommandTable implements the commands configured in the command
table as a motion sequence.

If a motion control statement is still being executed, it must not be interrupted by
the start of the same motion control statement. You should therefore call a motion
control statement only once in the user program.

Fig. 17.7 Calling the motion control statements in LAD representation

Calls of the motion control statements

http://pnap.ir/siemens-s71200-price-list/

17.1 Integral and technological functions

561

By assigning the AXIS parameter, you define the axis to be controlled by the
motion control statements. At AXIS, specify the data block which was generated
when configuring the technology object TO_Axis_PTO (Fig. 17.8). At the parame-
ter CommandTable of the statement MC_CommandTable, create the data block
that has been generated in the configuration of the technology object.

17.1.4 Technology objects for PID control

With the technology objects for PID control you create control loops with PID
action and self-tuning in manual and automatic mode. The statements PID_Com-
pact (universal PID controller with self-optimization) and PID_3STEP (step con-
trollers with 3-point mode with self-optimization for valves) are available.

A PID controller continuously records the measured Input value of the controlled
variable in a control loop, and compares it with the desired setpoint. The PID con-

Fig. 17.8 Data structure of the motion control technology objects

Data structure for the Axis technology object with motion control statements

Axis_1

Command table_1

Technology object
TO_Axis_PTO

Technology object
TO_CommandTable_PTO

Axis

Axis

Axis

Axis

Axis

Axis

Axis

Axis

CommandTable

Axis

MC_Power

MC_Halt

MC_Reset

MC_MoveJog

MC_Home

MC_MoveAbsolute

MC_ChangeDynamic

MC_CommandTable

MC_MoveRelative

http://pnap.ir/siemens-s71200-price-list/

17 Appendix

562

troller calculates a manipulated variable from the difference (the control devia-
tion), and this matches the controlled variable to the setpoint.

With a PID controller, the controlled variable comprise three components: the
P component which is proportional to the control deviation, the I component which
is calculated by integration, increases along with the duration of the deviation,
and finally results in compensation of the deviation, and the D component which
increases along with the rate of change of the control deviation in order to mini-
mize this as rapidly as possible.

The technology object PID_Compact requires an analog input channel for the
actual value and an analog output channel for the (analog) manipulated variable.
If the manipulated variable is to be output as pulse width modulated signal, a dig-
ital output channel is required. The pulse generators integrated in the CPU are
not required.

The technology object PID_3STEP requires an analog input channel for the actual
value and two digital outputs for “Control up” (e.g. open valve) and “Control
down” (e.g. close valve).

Configuring the PID control technology object

A PID controller can be created in the following ways: You first create a new tech-
nology object and then program the controller statement with the specification of
the technology object as an instance data block, or you first program the control-
ler statement, where the required instance data block is the technology object,
and then you configure the technology object.

Programming the controller statement

The controller must record the actual value at defined intervals – the scanning
time – in order to be able to determine its time characteristics. Therefore the con-
troller statement must be called in a cyclic interrupt organization block whose

Fig. 17.9 Calls of the controller statements in LAD representation

Calls of PID_Compact and PID-3STEP statements

17.1 Integral and technological functions

563

call interval corresponds to the scanning time. The call can only be made as a sin-
gle instance. The instance data block required corresponds to the technology
object PID control.

To program the PID controller, create a cyclic interrupt OB with the desired scan
time (see Chapter 5.7.3 “Cyclic interrupts” on page 159) and program the PID con-
troller either directly in the cyclic interrupt organization block or in a block which
is called in the cyclic interrupt OB. Drag the required statement from the State-
ments task card under Technology and PID Control > Compact PID into the open
block and select the corresponding data block from the drop-down list – if you
have already configured the technology object – or specify a new data block which
is then created. Fig. 17.9 shows the call of the controller statements.

Configuring the controller

You can also create a PID control technology object before programming one of
the controller statements. In the project tree, open the Technology objects group
and double-click on Add new object. Click on the PID Control button and select a
controller type. If the technology object to be configured is already available,
open it in the project tree and double-click on Configuration. Enter the desired
parameters. Fig. 17.10 shows the basic settings of the configuration for a PID_3-
STEP 3-point controller.

Fig. 17.10 Configuring the PID controller technology object

17 Appendix

564

17.2 Telephone network connections
with TeleService

You use the TeleService to connect a programming device or PC to a PLC or HMI
station via the telephone network. This enables you to manage, control, and mon-
itor remote machines or plants from a central point. TeleService is standalone
software and does not require the installation of STEP 7. TeleService is included
in the scope of delivery of STEP 7 in the TIA Portal. The connection to the central
programming device is established via a modem.

A TS Adapter creates the connection on the station side. The TS Adapter IE Basic
consists of the basic unit and a TS module with the modem or an interface for con-
necting to an external modem. The basic unit has an Ethernet interface for connect-
ing to a programming device or programmable controller. The TS-Adapter IE Basic
is parameterized with TeleService in the TIA Portal. Fig. 17.11 shows the basic
structure of a remote connection using a TS Adapter.

Send an e-mail

The statement TM_MAIL sends an e-mail via the PN interface of the CPU to the
dial-in server of the Internet service provider. If there is no direct Internet con-
nection via the PN interface, the TS Adapter IE can be used to connect to the phone
network. TM_MAIL uses SMTP (Simple Mail Transfer Protocol) as its transfer pro-
tocol.

For programming TM_MAIL, drag the statement from the program elements cat-
alog under Communication > TeleService to the open block. Fig. 17.12 shows the
call of TM_MAIL in LAD representation.

Fig. 17.11 Controlling a PLC station over a remote connection using TeleService

PG/PC

PG/PC

S

S

PLC station

Industrial Ethernet

Modem

STEP 7 i

COM-/USB
connection

TS adapter
IE Basic

Analog, ISDN, GSM

Remote connection with TeleService

S

n TIA portal

Direct connection for assigning
adapter parameters

17.3 Telecontrol with CP 1242-7

565

17.3 Telecontrol with CP 1242-7

The telecontrol statements control the connection setup and data transfer with a
CP 1242-7 communication module. You will find the communication functions in
the program elements catalog under Communication >Communication processor
> GPRSComm:CP1242-7 after the CP 1242-7 communication module has been
“subsequently installed” with a hardware support package. The calls of these
functions are shown in Fig. 17.13.

Fig. 17.12 Call of TM_MAIL to LAD representation

Fig. 17.13 Calls for telecontrol in LAD representation

TM_MAIL sends an e-mail (SMTP) via an Industrial
Ethernet connection. REQ, BUSY, DONE, ERROR,
and STATUS control the transmission. The recipient
addresses are specified at TO_S and CC. SUBJECT, TEXT,
and ATTACHMENT contain the contents of the e-mail.
The address of the mail server, the username,
the password, and the sender’s address are entered
into the instance data.

Calls of TM_MAIL statement

Calls for telecontrol

Establishing a connection
via the GSM network

Configure a GPRS module

Terminating a connection
via the GSM network

Sending data
via the GSM network

Receiving data
via the GSM network

17 Appendix

566

Establishing and clearing a connection via the GSM network

TC_CON sets up a communication connection in an S7-1200 station with a
CP 1242-7. The connection types ISO-ON-TCP (connection to a CP 1242-7), UDP
(connection to any partner), SMS (connection to an SMS client), and telecontrol
connection (connection to a telecontrol server) are available.

The parameters REQ, BUSY, DONE, ERROR, and STATUS control the establishment
of a connection. At the ID parameter, enter the connection ID and at the parame-
ter INTERFACE, enter the hardware ID of the CP 1242-7 from the System constants
tab in the default tag table. The CONNECT parameter contains a pointer to the
data block with the connection data. Depending on the type of connection used,
this data block is derived from one of the system data types TCON_ip_rfc,
TCON_IP_V4, TCON_phone, or TCON_WDC.

TC_DISCON closes the connection established with TC_CON. The parameters REQ,
BUSY, DONE, ERROR, and STATUS control the establishment of a connection. At
the ID parameter, enter the connection ID and at the parameter INTERFACE, enter
the hardware ID of the CP 1242-7 from the System constants tab in the default tag
table.

Sending data via the GSM network

TC_SEND sends data via a connection established with TC_CON. The parameters
REQ, BUSY, DONE, ERROR, and STATUS control the data transmission. At the ID
parameter, enter the connection ID and at the parameter INTERFACE, enter the
hardware ID of the CP 1242-7 from the System constants tab in the default tag
table. The DATA parameter contains a pointer to the send data. The number of
bytes to be sent is specified at the LEN parameter.

Receiving data via the GSM network

TC_RECV receives data via a connection established with TC_CON. The parameters
EN_R, BUSY, NDR, ERROR, and STATUS control the data transmission. At the ID
parameter, enter the connection ID and at the parameter INTERFACE, enter the
hardware ID of the CP 1242-7 from the System constants tab in the default tag
table. The DATA parameter contains a pointer to the receive mailbox. You enter the
maximum number of bytes to be received at the parameter LEN. The actual num-
ber of bytes received is output at the parameter RCVD_LEN.

Transferring configuration data to the CP 1242-7

TC_CONFIG transfers (new) configuration data to the CP 1242-7 communication
module and thus overwrites (temporarily) the data configured with the hardware
configuration. On the next startup, the initial configuration data is imported
again. The parameters REQ, BUSY, DONE, ERROR, and STATUS control the trans-
mission. At the parameter INTERFACE, enter the hardware ID of the CP 1242-7
from the System constants tab in the default tag table. The parameter CONFIG con-
tains a pointer to a data area with the configuration data whose structure is spec-
ified by the system data type IF_CONF.

17.4 Web server

567

17.4 Web server

A CPU 1200 has a web server that provides information from the CPU. To read out
the information you require a web browser which displays the information on the
HTML pages.

17.4.1 Enable web server

You enable the web server with the hardware configuration using the Enable web
server on this module checkbox in the CPU properties under the Web server group.

By activating the Permit access only via HTTPS checkbox you limit access to the
secure hypertext transmission protocol. You additionally require a valid and
installed certificate, which you can download and install via the download certifi-
cate link on the initial page of the web server.

17.4.2 Reading out web information

In order to access the CPU's web server, the PC or PG must establish an Ethernet
connection (TCP/IP) to the CPU. Start the web browser and enter the CPU's IP
address as URL in the form http://aaa.bbb.ccc.ddd or – for a secure connection –
https://aaa.bbb.ccc.ddd.

You can turn off automatic updating on or off and generate a print image of the
updated website using the icons on the top right of each page. To enable logging
on, two input boxes are provided for the user name and password on every page
at the top left. Registration is not required for read access. To perform specific
actions such as a firmware update for the CPU via the web server, it is necessary
to log in as “admin” with a password configured for a protected CPU. The standard
web pages use JavaScript and cookies, which you should release for unrestricted
operation in the web browser.

17.4.3 Standard web pages

The first page displayed by the web server is the Welcome page. From here, click
on ENTER to reach the Start page. The Start page shows a graphical representation
of the CPU with the enabled LEDs, along with the general data and the status of
the CPU (Fig. 17.14) .

The Identification page contains static information such as order number, serial
number, and version numbers.

On the Diagnostics Buffer page you can see the contents of the diagnostics buffer
with the most recent entries first. Select the group of 25 to be displayed from the
drop-down list. Detailed information about the selected event is displayed.

The Module Information page shows the module status of the PLC station. From
here you can call up the status of individual modules. Use the link in the “Head-

17 Appendix

568

ing” to access a higher module level, the links in the table column Name to access
lower levels.

The Communication page shows the network connection and used addresses in
the Parameters tab and in the Statistics tab it shows statistical information on the
data packets transmitted and received.

On the Variable Status page, you can enter operands in a table and display their
statuses. Note the fixed time here for the automatic update. Clicking on Monitor
Value updates the operand values immediately. If you are logged in as “admin”,
you can also control the operand values.

On the Data Logs page you can transfer the data archives in CSV format created in
the user program to the hard disk of the programming device.

The User Pages page shows a list of websites with user-specific web applications.
When configuring the web server, you can specify the web pages in the CPU prop-
erties which you wish to load together with the other settings of the web server
into the CPU.

The link to the Update Firmware page is only shown if you are logged in as
“admin”.

A click on Introduction opens the Welcome page.

Fig. 17.14 Start page of the web server

17.5 Data logging

569

WWW Initialize web server and synchronize web pages

WWW initializes user-defined pages in the web server of the CPU and synchro-
nizes access between the pages and the user data. WWW is called cyclically in the
user program. You can find WWW in the program elements catalog in the section
Communication under Web server (Fig. 17.15).

17.5 Data logging

17.5.1 Introduction

With data logging, selected process values from the user program are written to
the data log file. The data log file is located in the load memory. This can be either
the internal load memory of the CPU or the external load memory on the memory
card.

A data log file stores the values in CSV format, i.e. each separated by a comma.
The logged data can be read out with a web browser using the web server available
in the CPU. If the data log file is on a memory card, the logged data can also be
read out using an SD card reader on the programming device.

The data log file is designed as a ring buffer with a configurable number of data
records. If the maximum number is reached, the oldest data record is overwritten.
The size of a data log file must not exceed 25% of the load memory size. All data
log files should not occupy more than a maximum of 50% of the load memory.

17.5.2 Using data logging

To use data logging, define a data buffer in a data area with any structure. You
can write the contents of the data buffer as a data record into the data log file. This
could be triggered, for example, at the end of a batch depending on production
or with a time-controlled trigger in a specific timeframe (Fig. 17.16).

DataLogCreate creates a new (empty) data log file in the load memory. DataLog
Open opens a data log file. The data records can then be written with DataLog
Write. A maximum of 10 data log files can be opened simultaneously. DataLog
Close closes a data log file so that no more data records can be written.

Each time a data record is written, the data log file is filled in. If it is full, the next
data record to be written overwrites the oldest data record. DataLogNewFile

Fig. 17.15 Graphic representation of system function WWW

WWW

CTRL_DB RET_VAL

The “Start data block” is created at the CTRL_DB parameter
and contains user-defined Web pages and references to
further data blocks with user-defined Web pages.

Synchronize web pages

Synchronize web pages and user program

17 Appendix

570

allows an “expansion” of the data log file to avoid overwriting old records. The
function creates a new (empty) data log file on the basis of the original data log
file.

17.5.3 Functions for data logging

Fig. 17.17 shows the call of functions for data logging in LAD representation.

DataLogCreate creates a new data log file. The parameters REQ, DONE, BUSY,
ERROR, and STATUS control the execution of the function. At the NAME parameter,
enter the name of the data log file, following the requirements for Windows file

Fig. 17.16 Data structure for data logging

Data structure for data logging

<Name>

<Name>

Data log file

Data log file

Data buffer (= data record)

NAME

ID

HEADER

NAME

RECORDS

DATA

RECORDS

ID

ID

ID

ID

DataLogCreate

DataLogNewFile

DataLogWrite

DataLogClose

DataLogOpen

The data log file is created in the load memory, either in the internal load memory, which is
integrated in the CPU, or in the external load memory on the memory card.

DataLogWrite writes the contents
of the data buffer as a data record
into the data log file.

DataLogNewFile
creates a new
data log file with
the properties of
an existing one.
The name and
the size can vary.

DataLogClose
closes a data log
file.

DataLogOpen
opens a data
log file for writing.

DataLogCreate
creates a new
data log file.
DATA specifies
the data area of
a data record.
RECORD specifies
how many data
records the data
log file can
accommodate.

http://pnap.ir/siemens-s71200-price-list/

17.5 Data logging

571

names. Further information on the data log file is located at the parameters DATA
(pointer to the data buffer with the data record), RECORDS (maximum number of
data records), and HEADER (header in the data log file). A numerical value speci-
fying the data log file is output at the ID parameter. You specify this numerical
value at the other functions that access this data log file.

DataLogOpen opens the log file whose identifier is in the ID parameter. If you
specify the name of the log file at the NAME parameter instead, the ID is output at
the ID parameter. The parameters REQ, DONE, BUSY, ERROR, and STATUS control
the execution of the function. Opening is the prerequisite for writing to the data
log file. DataLogCreate and DataLogNewFile also open the newly created data log
file. Use the MODE parameter to select whether the data records are deleted on
opening (if MODE = 1).

DataLogWrite writes a data record to the data log file whose identifier is in the
ID parameter. The data record is taken from the data buffer specified at the DATA
parameter of DataLogCreate

DataLogClose closes the data log file whose identifier is at the ID parameter. The
parameters REQ, DONE, BUSY, ERROR, and STATUS control the execution of the
function. A data log file is also closed in the operating modes STARTUP and STOP.

DataLogNewFile creates a new data log file with the same properties as the data
log file whose identifier is specified at the ID parameter. After execution, the iden-
tifier of the newly created data log file is at the ID parameter. At the NAME param-
eter, specify the name for the new data log file and at the RECORDS parameter,
specify the maximum number of data records. The parameters REQ, DONE, BUSY,
ERROR, and STATUS control the execution of the function.

Fig. 17.17 Functions for data logging

Functions for data logging

Create data log file

Close data log file

Write data record

Create data log file on
the basis of another one

Open data log file

Index

572

Index

A

ABS 368
ACOS 373
ADD 367
Addressing 85
Alarm system (HMI) 528
AND (word logic

operation) 392
AND function

Description 331
with FBD 252
with LAD 215
with SCL 291

Arc functions 373
Area pointer (HMI) 515
Arithmetic functions

for numerical values
Description 366
with FBD 273
with LAD 236

for time values
Description 369
with FBD 273
with LAD 236

with SCL 301
ARRAY (data type) 104
ASIN 373
Assignment

Description 334
with FBD 259
with LAD 222
with SCL 294

Assignment list 203
ATAN 373
ATH 389
ATTACH 165
Authorization 31

B

Basic Panels 508
BCD16 (data type) 95
BCD32 (data type) 95

Binary logic operations
with FBD 249
with LAD 212
with SCL 288

Bit memory 82
Block

Calling 137
Comparing 432
Compile 198
Copy protection 132
Correct call 200
Editing

FBD elements 248
LAD elements 211
SCL statement 286

Interface
Correction 133
Description 133
Supplying 139

Know-how protection 132
Programming

Code block 183
Data block 194

Properties 128
Block calls

Description 413
with FBD 282
with LAD 245
with SCL 316

Block end function
Description 412
with FBD 282
with LAD 244
with SCL 316

BOOL (data type) 95
BYTE (data type) 95

C

Call structure 204
CAN_DINT 158
CASE (SCL) 308
CEIL 379
CHAR (data type) 100
CHARS_TO_STRG 387
Clock memory bits 84

Communication
Configuring 483
Open user

communication 484
Point-to-point

communication 499
Comparison functions

Description 364
with FBD 258
with LAD 219
with SCL 300

Configuring function keys
(HMI) 520

Configuring process screen
(HMI) 517

Configuring the
network 482

Constants table 182
Contacts

Comparison 219
Edge 218
NC contact 213
NO contact 212
OK contact 219

CONTINUE (SCL) 314
Control program

Cycle processing
time 439

Programming
with FBD 246
with LAD 209

Control statements
(SCL) 307

Controlling the program
flow
with FBD 279
with LAD 241
with SCL 305

CONV 377
Conversion functions

Description 376
with FBD 275
with LAD 238
with SCL 299

Copy protection 132
COS 373
Counter (HSC) 548

Index

573

Cross-reference list
for HMI objects 512
for the control

program 201
CTD down counter 352
CTRL_HSC 552
CTRL_PWM 556
CTU up counter 351
CTUD up-down

counter 353
Cycle processing time 437,

439
Cycle time monitoring 144
Cyclic interrupt 159

D

Data addresses 84
Data management

in the CPU 435
with STEP 7 29

Data types
Classification 92
Elementary 92
Structured 101

DATE (data type) 100
DEC 369
DECO 394
DEMUX 395
Dependency structure 205
DETACH 166
Device name, device

number 74
DeviceStates 173
Diagnostics buffer 437
Diagnostics interrupt OB

82 176
Digital functions

with FBD 270
with LAD 233
with SCL 298

DINT (data type) 98
DIS_AIRT 166
Distributed I/O

AS-Interface 473
PROFIBUS DP 462
PROFINET IO 456

DIV 367
Downloading HMI

program 543
DPNRM_DG 471
DPRD_DAT 472
DPWR_DAT 472
DTL (data type) 101
DWORD (data type) 95

E

Edge evaluation
Description 338
of a binary tag

with FBD 256
with LAD 218

of RLO
with FBD 266
with LAD 229

with pulse output
with FBD 261
with LAD 224

with SCL 295
EN_AIRT 167
EN/ENO mechanism

Description 417
with FBD 418
with LAD 418
with SCL 306

Enable peripheral
outputs 451

ENCO 395
ENO (tag, SCL) 305
ErrorStruct (data type) 112
Exclusive OR function

Description 333
with FBD 254
with SCL 292

EXIT (SCL) 316
EXP 374
Expressions (SCL) 288
EXPT 375

F

FILL_BLK 361
Filling of bit field

Description 336
with FBD 262
with LAD 225

FLOOR 380
FOR (SCL) 311
FRAC 375
Function lists (HMI) 528

G

GET_DIAG 175
GET_ERROR 170
GET_ERROR_ID 170

H

Hardware detection 434
Hardware diagnostics 436

High-speed counter 548
HMI device wizard 511
HMI tags 513
HTA 389

I

IEC counter functions
Description 349
with FBD 268
with LAD 231
with SCL 297

IEC time functions
Description 344

IEC timer functions
with FBD 267
with LAD 230
with SCL 296

IF (SCL) 308
INC 369
Inputs 80
INT (data type) 98
Interrupt processing

Cyclic interrupt 159
Delaying and

enabling 166
Introduction 153
Process interrupt 163
Time-delay interrupt 155

INV 394
IP address

Assigning to CPU 424
Configuring 73
of the programming

device 421

J

JMP_LIST 409
Jump distributor

with FBD 281
with LAD 244

Jump functions
Description 406
with FBD 280
with LAD 242

Jump list
with FBD 281
with LAD 243

L

Language setting 207
LED (function) 172
Library

Editing 42

Index

574

LIMIT 398
LN 374
Local error handling 169
Logic functions

Description 392
with FBD 277
with LAD 240
with SCL 303

LREAL (data type) 98

M

Math functions
with FBD 274
with LAD 237

Mathematical functions
Description 372
with SCL 303

MAX 397
Memory card 428
Memory functions

Description 334
with FBD 265
with LAD 227
with SCL 294

Memory reset 439
Memory utilization

online 437, 439
MIN 397
Minimum cycle time 146
MOD 368
Modules

Assigning parameters 61
Properties 50
Status displays 436

ModuleStates 174
MOVE 356
MOVE_BLK 360
MUL 367
MUX 395

N

NEG 369
Negating result of logic

operation
with FBD 255
with LAD 218

Negating the result of logic
operation
Description 329
with SCL 293

Nesting depth
Blocks 125

NORM_X 381

Normally closed
contact 213

Normally open contact 212

O

OK test
Description 330
with FBD 257
with LAD 219

Online tools 439
Open user

communication 484
Operands 79
Operating mode

RUN 119
STARTUP 118
STOP 118

Operator control and dis-
play objects (HMI) 525

Operators (SCL) 286
OR (word logic

operation) 392
OR function

Description 332
with FBD 253
with LAD 215
with SCL 291

Organization block
Cyclic interrupt 159
OB 1 main program 143
OB 100 startup

program 142
OB 80 time error 168
OB 82 diagnostics

interrupt 176
Process interrupt 163
Time-delay interrupt 155

Outputs 80-81

P

Parallel connection 215
PEEK (SCL) 90
Peripheral inputs 80
Peripheral outputs 80-81
PLC station

Adding 60
Parameterization 61

PLC tag table
Editing 178
Monitoring with 445

Point-to-point
communication 499

POKE (SCL) 90

Priority classes 154
Process image update 143
Process interrupt 163
PROFIBUS DP

Addressing 465
Configuring 467

PROFINET IO
Addressing 457
Configuring 459
Real-Time

Communication 461
Program execution

modes 124
Program status 441
Project

Editing 41
Object hierarchy 38

Pulse generator 554

Q

QRY_CINT 161
QRY_DINT 158

R

RALRM 473
RD_LOC_T 151
RD_SYS_T 150
RDREC 472
RE_TRIGR 145
READ_DBL 362
REAL (data type) 98
Recipes (HMI) 535
REPEAT (SCL) 313
Resources

Offline 206
Retentive behavior 121
ROL 392
ROR 391
ROUND 380
RTM 152

S

S_CONV 383
SCALE_X 381
Scanning of signal state

Description 329
with FBD 250
with LAD 212
with SCL 288

SEL 395
Series connection 215
SET_CINT 161

Index

575

SET_TIMEZONE 150
Setting and resetting

Description 335
with FBD 260
with LAD 223
with SCL 294

Shift functions
Description 389
with FBD 276
with LAD 239
with SCL 304

SHL 391
SHR 389
Simulation (HMI) 542
SIN 373
SINT (data type) 98
SQR 374
SQRT 374
SRT_DINT 158
Start-up routine 142
STEP 7

Portal view 32
Project view 34

STP 147
STRG_TO_CHARS 387
STRG_VAL 385
STRING (data type) 102
String functions

Description 398
with FBD 278
with LAD 240

STRUCT (data type) 104
SUB 367
SWAP 363
SWITCH 410
System memory bits 82

T

T branch
with FBD 255
with LAD 217

T_ADD 371
T_CONFIG 495
T_CONV 383
T_DIFF 371
T_SUB 371

Tags
Addressing 85
Declaring data tags 198
Forcing 452
HMI tags 513
Introduction 79
Modifying 450
Monitoring with

Watch tables 449
monitoring with

PLC tag table 445
PLC tag table 178

TAN 373
Technology objects

for motion control 557
for PID control 561

TeleService 564
Text and graphics lists

(HMI) 526
Time

Configuring 148
Setting online 151

TIME (data type) 100
Time error OB 80 168
TIME_OF_DAY (data

type) 101
Time-delay interrupt 155
TM_MAIL 564
TOF off-delay 347
TON on-delay 347
TONR accumulating ON

delay 348
TP pulse generation 346
Transfer functions

Description 356
with FBD 271
with LAD 235
with SCL 298

Trigonometric
functions 373

Troubleshooting 167
TRUNC 380

U

UDINT (data type) 97
UFILL_BLK 361

UINT (data type) 97
UMOVE_BLK 360
User administration

(HMI) 539
User data 81
User program

Download 425
Minimum cycle time 146
Process image 143
Programming

General 189
with FBD 246
with LAD 209
with SCL 284

Reaction time 146
Test with

Program status (LAD,
FBD) 442

Program status
(SCL) 444

Watch tables 447
Troubleshooting 167

USINT (data type) 97

V

VAL_STRG 387
VARIANT (parameter

type) 108
VOID (parameter type) 109

W

Warm restart 119
Watch tables 447
Web server 567
WHILE (SCL) 312
WORD (data type) 95
WR_SYS_T 148
WRIT_DBL 362
WRREC 472
WWW 569

X

XOR (word logic
operation) 392

Hans Berger

Automating
with SIMATIC
Controllers, Software, Programming,
Data Communication, Operator Control
and Process Monitoring

5th revised and enlarged edition, 2012,
284 pages, 140 illustrations, 49 tables, hardcover
ISBN 978-3-89578-387-6, e 44.90

Hans Berger

Automating
with SIMATIC S7-300
inside TIA Portal
Configuring, Programming and Testing
with STEP 7 Professional V11

2012, 709 pages, 429 illustrations,
85 tables, hardcover
ISBN 978-3-89578-382-1, e 69.90

Hans Berger

Automating
with SIMATIC S7-400
inside TIA Portal
Configuring, Programming and Testing
with STEP 7 Professional

June 2013, ca. 760 pages,
441 illustrations, 94 tables, hardcover
ISBN 978-3-89578-383-8, e 69.90

Nicolai Andler

Tools for Project
Management, Workshops
and Consulting
A Must-Have Compendium of
Essential Tools and Techniques

2nd revised and enlarged edition, 2011,
382 pages, 136 illustrations, 55 tables, hardcover
ISBN 978-3-89578-370-8, e 39.90

http://pnap.ir/siemens-s71200-price-list/

	Cover
	Automating with SIMATIC S7-1200
	Imprint
	Preface
	The contents of the book at a glance
	Table of contents
	1 Introduction
	1.1 Overview of the S7-1200 automation system
	1.1.1 SIMATIC S7-1200
	1.1.2 Overview of STEP 7 Basic
	1.1.3 Three programming languages
	1.1.4 Execution of the user program
	1.1.5 Data management in the SIMATIC automation system
	1.1.6 Operator control and monitoring with process images

	1.2 Introduction to STEP 7 Basic for S7-1200
	1.2.1 Installing STEP 7
	1.2.2 Automation License Manager
	1.2.3 Starting STEP 7 Basic
	1.2.4 Portal view
	1.2.5 Information system
	1.2.6 The windows of the project view
	1.2.7 Adapting the user interface

	1.3 Editing a SIMATIC project
	1.3.1 Structured representation of project data
	1.3.2 Project data and editors for a PLC station
	1.3.3 Creating and editing a project
	1.3.4 Creating and editing libraries

	2 SIMATIC S7-1200 automation system
	2.1 S7-1200 station components
	2.2 S7-1200 CPU modules
	2.2.1 Integrated I/O
	2.2.2 PROFINET connection
	2.2.3 Status LEDs
	2.2.4 SIMATIC Memory Card
	2.2.5 Expansions of the CPU

	2.3 Signal modules (SM)
	2.3.1 Digital I/O modules
	2.3.2 Analog input/output modules
	2.3.3 Properties of the I/O connections

	2.4 Communication modules (CM)
	2.4.1 Point-to-point communication
	2.4.2 PROFIBUS DP
	2.4.3 Actuator/sensor interface
	2.4.4 GPRS transmission

	2.5 Further modules
	2.5.1 Compact switch module (CSM)
	2.5.2 Power module (PM)
	2.5.3 TS Adapter IE Basic
	2.5.4 SIM 1274 simulator

	2.6 SIPLUS S7-1200

	3 Device configuration
	3.1 Introduction
	3.2 Configuring a station
	3.2.1 Adding a PLC station
	3.2.2 Arranging modules
	3.2.3 Adding an HMI station

	3.3 Assigning module parameters
	3.3.1 Parameterization of CPU properties
	3.3.2 Addressing input and output signals
	3.3.3 Parameterization of digital inputs
	3.3.4 Parameterization of digital outputs
	3.3.5 Parameterization of analog inputs
	3.3.6 Parameterization of analog outputs

	3.4 Configuring the network
	3.4.1 Introduction
	3.4.2 Networking stations
	3.4.3 Node addresses in a subnet
	3.4.4 Connectors
	3.4.5 Configuring a PROFINET subnet
	3.4.6 Configuring a PROFIBUS subnet
	3.4.7 Configuring an AS-i subnet

	4 Variables and data types
	4.1 Operands and tags
	4.1.1 Introduction, overview
	4.1.2 Operand areas: inputs and outputs
	4.1.3 Operand area bit memory
	4.1.4 Operand area data
	4.1.5 Operand area temporary local data

	4.2 Addressing
	4.2.1 Signal path
	4.2.2 Absolute addressing of an operand
	4.2.3 Absolute addressing of an operand area
	4.2.4 Symbolic addressing
	4.2.5 Addressing a tag part
	4.2.6 Addressing constants
	4.2.7 Indirect addressing

	4.3 General information on data types
	4.3.1 Overview of data types
	4.3.2 Implicit data type conversion
	4.3.3 Overlaying tags (data type views)

	4.4 Elementary data types
	4.4.1 Bit-serial data types BOOL, BYTE, WORD and DWORD
	4.4.2 BCD-coded numbers BCD16 and BCD32
	4.4.3 Unsigned fixed-point data types USINT, UINT and UDINT
	4.4.4 Fixed-point data types with sign SINT, INT and DINT
	4.4.5 Floating-point data types REAL and LREAL
	4.4.6 Data type CHAR
	4.4.7 Data type DATE
	4.4.8 Data type TIME
	4.4.9 TIME_OF_DAY (TOD) data type

	4.5 Structured data types
	4.5.1 Data type DTL
	4.5.2 Data type STRING
	4.5.3 Data type ARRAY
	4.5.4 Data type STRUCT

	4.6 Parameter types
	4.6.1 Parameter types for IEC timer functions
	4.6.2 Parameter types for IEC counter functions
	4.6.3 Parameter type VARIANT
	4.6.4 Parameter type VOID

	4.7 PLC data types
	4.8 System data types
	4.8.1 IEC_TIMER system data type
	4.8.2 IEC_COUNTER system data type
	4.8.3 TCON_Param data type
	4.8.4 TADDR_Param data type
	4.8.5 Data type ErrorStruct
	4.8.6 TimeTransformationRule data type

	4.9 Hardware data types

	5 Edit user program
	5.1 Operating modes
	5.1.1 STOP mode
	5.1.2 STARTUP mode
	5.1.3 RUN mode
	5.1.4 Retentive behavior of operands

	5.2 Creating a user program
	5.2.1 Program draft
	5.2.2 Program execution
	5.2.3 Nesting depth

	5.3 Programming blocks
	5.3.1 Block types
	5.3.2 Editing block properties
	5.3.3 Configuring know-how protection
	5.3.4 Copy protection
	5.3.5 Block interface
	5.3.6 Programming block parameters

	5.4 Calling blocks
	5.4.1 General information on calling logic blocks
	5.4.2 Calling a function (FC)
	5.4.3 Calling a function block (FB)
	5.4.4 “Passing on” of block parameters

	5.5 Start-up routine
	5.6 Main program
	5.6.1 Organization blocks for the main program
	5.6.2 Process image update
	5.6.3 Cycle time
	5.6.4 Reaction time
	5.6.5 Stop program execution
	5.6.6 Time
	5.6.7 Runtime meter

	5.7 Interrupt processing
	5.7.1 Introduction to interrupt processing
	5.7.2 Time-delay interrupts
	5.7.3 Cyclic interrupts
	5.7.4 Process interrupts
	5.7.5 Assigning interrupts during runtime
	5.7.6 Delay and enable interrupts

	5.8 Troubleshooting, diagnostics
	5.8.1 Causes of errors and responses
	5.8.2 Error display with the ENO output
	5.8.3 Time error OB 80
	5.8.4 Local error handling
	5.8.5 Diagnostic functions in the user program
	5.8.6 Diagnostics interrupt OB 82

	6 Program editor
	6.1 Introduction
	6.2 PLC tag table
	6.2.1 Creating and editing the PLC tag table
	6.2.2 Defining PLC tags
	6.2.3 Editing a PLC tag table
	6.2.4 Exporting and importing a PLC tag table
	6.2.5 Constants tables

	6.3 Programming a code block
	6.3.1 Creating a new code block
	6.3.2 Working area of program editor for code blocks
	6.3.3 Specifying code block properties
	6.3.4 Programming a block interface
	6.3.5 Programming control functions
	6.3.6 Editing tags
	6.3.7 Working with program comments

	6.4 Programming a data block
	6.4.1 Creating a new data block
	6.4.2 Working area of program editor for data blocks
	6.4.3 Defining properties for data blocks
	6.4.4 Declaring data tags
	6.4.5 Entering data tags in global data blocks

	6.5 Compiling blocks
	6.5.1 Starting the compilation
	6.5.2 Compiling SCL blocks
	6.5.3 Eliminating errors following compilation

	6.6 Program information
	6.6.1 Cross-reference list
	6.6.2 Assignment list
	6.6.3 Call structure
	6.6.4 Dependency structure
	6.6.5 Consistency check
	6.6.6 CPU resources

	6.7 Language setting

	7 Ladder logic LAD
	7.1 Introduction
	7.1.1 Programming with LAD in general
	7.1.2 Program elements of ladder logic

	7.2 Programming with contacts
	7.2.1 NO and NC contacts
	7.2.2 Consideration of sensor type in ladder logic
	7.2.3 Series connection of contacts
	7.2.4 Parallel connection of contacts
	7.2.5 Mixed series and parallel connections
	7.2.6 T branch, open parallel branch in the ladder logic
	7.2.7 Negating result of logic operation in the ladder logic
	7.2.8 Edge evaluation of a binary tag in ladder logic
	7.2.9 OK contact
	7.2.10 Comparison contacts

	7.3 Programming with coils
	7.3.1 Simple and negated coils
	7.3.2 Set and reset coil
	7.3.3 Retentive response due to latching
	7.3.4 Edge evaluation with pulse output in the ladder logic
	7.3.5 Multiple setting and resetting (filling of bit field) in the ladder logic
	7.3.6 Starting IEC timer functions in the ladder logic with coils

	7.4 Programming with Q boxes in the ladder logic
	7.4.1 Arrangement of Q boxes in the ladder logic
	7.4.2 Memory boxes in the ladder logic
	7.4.3 Edge evaluation of current flow
	7.4.4 Example of binary scaler in the ladder logic
	7.4.5 Controlling IEC timer functions in the ladder logic with Q boxes
	7.4.6 Controlling IEC counter functions in the ladder logic with Q boxes

	7.5 Programming with EN/ENO boxes in the ladder logic
	7.5.1 Positioning of EN/ENO boxes in the ladder logic
	7.5.2 Transfer functions in the ladder logic
	7.5.3 Arithmetic functions for numerical values in the ladder logic
	7.5.4 Arithmetic functions for time values in the ladder logic
	7.5.5 Math functions in the ladder logic
	7.5.6 Conversion functions in the ladder logic
	7.5.7 Shift functions in the ladder logic
	7.5.8 Logic functions in the ladder logic
	7.5.9 Functions for strings in the ladder logic

	7.6 Functions for program flow control (LAD)
	7.6.1 Jump functions in the ladder logic
	7.6.2 Jump list in the ladder logic
	7.6.3 Jump distributor in the ladder logic
	7.6.4 Block end function in the ladder logic
	7.6.5 Block call functions in the ladder logic

	8 Function block diagram FBD
	8.1 Introduction
	8.1.1 Programming with function block diagram in general
	8.1.2 Program elements of the function block diagram

	8.2 Programming of binary logic operations (FBD)
	8.2.1 Scanning for signal states “1” and “0”
	8.2.2 Taking account of the sensor type in the function block diagram
	8.2.3 AND function
	8.2.4 OR function
	8.2.5 Exclusive OR function
	8.2.6 Mixed binary logic operations
	8.2.7 T branch in the function block diagram
	8.2.8 Negate result of logic operation in the function block diagram
	8.2.9 Edge evaluation of binary tags in the function block diagram
	8.2.10 Validity checking of floating-point numbers in the function block diagram
	8.2.11 Comparison functions in the function block diagram

	8.3 Programming with standard boxes (FBD)
	8.3.1 Assignment and negated assignment
	8.3.2 Set and reset boxes
	8.3.3 Edge evaluation with pulse output in the function block diagram
	8.3.4 Multiple setting and resetting (filling of bit field) in the function block diagram
	8.3.5 Starting IEC timer functions in the function block diagram with standard boxes

	8.4 Programming with Q boxes (FBD)
	8.4.1 Arrangement of Q boxes in the function block diagram
	8.4.2 Memory boxes in the function block diagram
	8.4.3 Edge evaluation of logic operation result in the function block diagram
	8.4.4 Example of binary scaler in the function block diagram
	8.4.5 Controlling IEC timer functions in the function block diagram with Q boxes
	8.4.6 IEC counter functions in the function block diagram

	8.5 Programming with EN/ENO boxes (FBD)
	8.5.1 Positioning of EN/ENO boxes in the function block diagram
	8.5.2 Transfer functions in the function block diagram
	8.5.3 Arithmetic functions for numerical values in the function block diagram
	8.5.4 Arithmetic functions with time values in the function block diagram
	8.5.5 Math functions in the function block diagram
	8.5.6 Conversion functions in the function block diagram
	8.5.7 Shift functions in the function block diagram
	8.5.8 Logic functions in the function block diagram
	8.5.9 Functions for strings in the function block diagram

	8.6 Functions for program flow control (FBD)
	8.6.1 Jump functions in the function block diagram
	8.6.2 Jump list in the function block diagram
	8.6.3 Jump distributor in the function block diagram
	8.6.4 Block end function in the function block diagram
	8.6.5 Block call functions in the function block diagram

	9 Structured Control Language SCL
	9.1 Introduction to programming with SCL
	9.1.1 Programming with SCL in general
	9.1.2 SCL statements and operators

	9.2 Programming binary logic operations with SCL
	9.2.1 Scanning for signal states “1” and “0”
	9.2.2 Taking account of the sensor type for SCL
	9.2.3 AND function
	9.2.4 OR function
	9.2.5 Exclusive OR function
	9.2.6 Combined binary logic operations
	9.2.7 Negating the result of logic operation

	9.3 Programming memory functions with SCL
	9.3.1 Value assignment of a binary tag
	9.3.2 Setting and resetting
	9.3.3 Edge evaluation

	9.4 Programming timer and counter functions with SCL
	9.4.1 IEC timer functions
	9.4.2 IEC counter functions

	9.5 Programming digital functions with SCL
	9.5.1 Transfer function, value assignment of a digital tag
	9.5.2 Conversion functions
	9.5.3 Comparison functions
	9.5.4 Arithmetic functions
	9.5.5 Mathematical functions
	9.5.6 Word logic operations
	9.5.7 Shift functions

	9.6 Controlling the program flow with SCL
	9.6.1 Working with the ENO tag
	9.6.2 EN/ENO mechanism with SCL
	9.6.3 Control statements
	9.6.4 Block functions

	9.7 Working with source files
	9.7.1 General procedure
	9.7.2 Programming a logic block in the source file
	9.7.3 Programming a data block in the source file
	9.7.4 Programming a PLC data type in the source file

	10 Basic functions
	10.1 Binary logic operations
	10.1.1 Introduction
	10.1.2 Scanning for signal states “1” and “0”, result of the scan
	10.1.3 Negating the result of the logic operation, NOT contact
	10.1.4 Testing floating-point tag, OK contact, OK box
	10.1.5 AND function, series connection
	10.1.6 OR function, parallel connection
	10.1.7 Exclusive OR function, non-equivalence function

	10.2 Memory functions
	10.2.1 Introduction
	10.2.2 Simple and negated coil, assignment
	10.2.3 Single set and reset
	10.2.4 Multiple setting and resetting
	10.2.5 Dominant setting and resetting, memory boxes

	10.3 Edge evaluation
	10.3.1 Functional principle of an edge evaluation
	10.3.2 Edge evaluation of the result of the logic operation
	10.3.3 Edge evaluation of a binary tag
	10.3.4 Edge evaluation with pulse output

	10.4 Time functions
	10.4.1 Introduction
	10.4.2 Pulse generation TP
	10.4.3 On-delay TON
	10.4.4 OFF delay TOF
	10.4.5 Accumulating ON delay TONR

	10.5 Counter functions
	10.5.1 Introduction
	10.5.2 Up counter CTU
	10.5.3 Down counter CTD
	10.5.4 Up-down counter CTUD

	11 Digital functions
	11.1 Transfer functions
	11.1.1 Introduction
	11.1.2 Copy tag, MOVE box for LAD and FBD
	11.1.3 Copy string, S_MOVE box for LAD and FBD
	11.1.4 Value assignments with SCL
	11.1.5 Copy data area (MOVE_BLK, UMOVE_BLK)
	11.1.6 Filling the data area (FILL_BLK, UFILL_BLK)
	11.1.7 Read and write the load memory (READ_DBL, WRIT_DBL)
	11.1.8 Swap bytes (SWAP)

	11.2 Comparison functions
	11.2.1 Overview
	11.2.2 Comparison of two tag values
	11.2.3 Range comparison

	11.3 Arithmetic functions for numerical values
	11.3.1 Introduction
	11.3.2 Addition ADD
	11.3.3 Subtraction SUB
	11.3.4 Multiplication MUL
	11.3.5 Division DIV
	11.3.6 Division with remainder as result MOD
	11.3.7 Generation of absolute value ABS
	11.3.8 Negation NEG
	11.3.9 Decrement DEC, increment INC

	11.4 Arithmetic functions for time values
	11.4.1 Introduction
	11.4.2 Addition T_ADD
	11.4.3 Subtraction T_SUB
	11.4.4 Difference T_DIFF
	11.4.5 Combine T_COMBINE

	11.5 Mathematical functions
	11.5.1 Introduction
	11.5.2 Trigonometric functions SIN, COS, TAN
	11.5.3 Arc functions ASIN, ACOS, ATAN
	11.5.4 Formation of square SQR
	11.5.5 Extraction of square root SQRT
	11.5.6 Exponentiate to base e EXP
	11.5.7 Calculation of Napierian logarithm LN
	11.5.8 Extracting decimal places FRAC
	11.5.9 Exponentiation to any base EXPT

	11.6 Conversion functions (Conversion of data type)
	11.6.1 Introduction
	11.6.2 Conversion function CONV
	11.6.3 Conversion functions for floating-point numbers
	11.6.4 Conversion functions SCALE_X and NORM_X
	11.6.5 Conversion function T_CONV
	11.6.6 Conversion function S_CONV
	11.6.7 Conversion functions STRG_VAL and VAL_STRG
	11.6.8 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG
	11.6.9 Conversion functions ATH and HTA

	11.7 Shift functions
	11.7.1 Introduction
	11.7.2 Shift to right (SHR)
	11.7.3 Shift to left (SHL)
	11.7.4 Rotate to right (ROR)
	11.7.5 Rotate to left (ROL)

	11.8 Logic functions
	11.8.1 Introduction
	11.8.2 Word logic operations (AND, OR, XOR)
	11.8.3 Invert (INV)
	11.8.4 Coding functions DECO and ENCO
	11.8.5 Selection functions SEL, MUX, and DEMUX
	11.8.6 Minimum selection MIN, Maximum selection MAX
	11.8.7 Limiter LIMIT

	11.9 Processing of strings (Data type STRING)
	11.9.1 Output length of a string LEN
	11.9.2 Combine strings CONCAT
	11.9.3 Output left part of string LEFT
	11.9.4 Output right part of string RIGHT
	11.9.5 Output middle part of string MID
	11.9.6 Delete part of a string DELETE
	11.9.7 Insert string INSERT
	11.9.8 Replace part of string REPLACE
	11.9.9 Find part of string FIND

	11.10 Calculating with the CALCULATE box in LAD and FBD

	12 Program flow control
	12.1 Jump functions
	12.1.1 Overview
	12.1.2 Absolute jump
	12.1.3 Conditional jump
	12.1.4 Jump list JMP_LIST
	12.1.5 Jump distributor SWITCH

	12.2 Block end function
	12.3 Calling of code blocks
	12.3.1 Introduction
	12.3.2 Calling a function FC
	12.3.3 Calling a function block (FB)

	12.4 EN/ENO mechanism
	12.4.1 EN/ENO mechanism with LAD and FBD
	12.4.2 EN/ENO mechanism with SCL
	12.4.3 EN/ENO for user blocks

	13 Online operation, diagnostics and debugging
	13.1 Connecting a programming device to the PLC station
	13.1.1 IP addresses of the programming device
	13.1.2 Connecting the programming device to the PLC station
	13.1.3 Assigning an IP address to the CPU module
	13.1.4 Switching on the online mode

	13.2 Transferring project data
	13.2.1 Loading project data for the first time
	13.2.2 Delta downloading of project data
	13.2.3 Error message following downloading
	13.2.4 Working with the memory card
	13.2.5 Processing blocks offline/online
	13.2.6 Comparing blocks offline/online
	13.2.7 Editing online project without offline project
	13.2.8 Uploading project data from the CPU

	13.3 Hardware diagnostics
	13.3.1 Status displays on the modules
	13.3.2 Diagnostics information
	13.3.3 Diagnostics buffer
	13.3.4 Diagnostics functions
	13.3.5 Online tools
	13.3.6 Further diagnostics information via the programming device

	13.4 Testing the user program
	13.4.1 Introduction to testing with program status
	13.4.2 Program status with LAD and FBD
	13.4.3 Program status in SCL
	13.4.4 Monitoring with the PLC tag table
	13.4.5 Monitoring of data tags
	13.4.6 Testing with watch tables
	13.4.7 Monitoring tags using watch tables
	13.4.8 Modifying tags using watch tables
	13.4.9 Enable peripheral outputs and “Modify now”
	13.4.10 Forcing tags

	14 Distributed I/O
	14.1 Introduction, overview
	14.2 PROFINET IO
	14.2.1 PROFINET IO components
	14.2.2 Addresses with PROFINET IO
	14.2.3 Configuring PROFINET IO
	14.2.4 Real-time communication with PROFINET IO

	14.3 PROFIBUS DP
	14.3.1 PROFIBUS DP components
	14.3.2 Addresses with PROFIBUS DP
	14.3.3 Configuring PROFIBUS DP
	14.3.4 System functions for PROFINET IO and PROFIBUS DP

	14.4 Actuator/sensor interface
	14.4.1 Components of actuator/sensor interface
	14.4.2 Configuring an AS-i master CM 1243-2
	14.4.3 Configuring an AS-Interface
	14.4.4 Interface to user program

	14.5 Communication via Modbus
	14.5.1 Modbus RTU
	14.5.2 Modbus TCP

	15 Communication
	15.1 Overview
	15.2 Open user communication
	15.2.1 Basics
	15.2.2 Open user communication with TCP and ISO-on-TCP
	15.2.3 Open user communication with the UDP protocol
	15.2.4 Communication functions for open user communication
	15.2.5 Configuring open user communication
	15.2.6 Configuring a PN interface with T_CONFIG

	15.3 S7 communication
	15.3.1 Basics
	15.3.2 Data structure for one-way data exchange
	15.3.3 Communication functions for one-way data exchange
	15.3.4 Configuring S7 communication

	15.4 Point-to-point communication
	15.4.1 Introduction to point-to-point communication
	15.4.2 Configuring the CM 1241 communication module
	15.4.3 Point-to-point communication functions
	15.4.4 USS protocol for drives

	16 Visualization
	16.1 Introduction to visualization
	16.1.1 Overview of HMI Panels in STEP 7 Basic
	16.1.2 Creating a project with an HMI station
	16.1.3 Cross-references for HMI objects

	16.2 Creating HMI tags and area pointers
	16.2.1 Introduction to HMI tags
	16.2.2 Creating an HMI tag
	16.2.3 Creating an area pointer

	16.3 Configuring process screens
	16.3.1 Introduction to configuring process screens
	16.3.2 Working window for process screens
	16.3.3 Working with screen layers
	16.3.4 Working with templates
	16.3.5 Working with function keys
	16.3.6 Creating a new screen
	16.3.7 Configuring a screen change
	16.3.8 Working with objects in process screens
	16.3.9 Changing screen objects during runtime
	16.3.10 Basic objects for screen configuration

	16.4 HMI functions
	16.4.1 Input and display of process values
	16.4.2 Working with alarms
	16.4.3 Working with recipes
	16.4.4 Working with the user administration

	16.5 Completing HMI configuration
	16.5.1 Compiling the HMI configuration (Consistency test)
	16.5.2 Simulation of HMI configuration
	16.5.3 Downloading configuration to the HMI station
	16.5.4 Maintenance of the HMI station

	17 Appendix
	17.1 Integral and technological functions
	17.1.1 High-speed counter (HSC)
	17.1.2 Pulse generator
	17.1.3 Technology objects for motion control
	17.1.4 Technology objects for PID control

	17.2 Telephone network connections with TeleService
	17.3 Telecontrol with CP 1242-7
	17.4 Web server
	17.4.1 Enable web server
	17.4.2 Reading out web information
	17.4.3 Standard web pages

	17.5 Data logging
	17.5.1 Introduction
	17.5.2 Using data logging
	17.5.3 Functions for data logging

	Index
	Further books from Publicis Publishing

