SKET 400

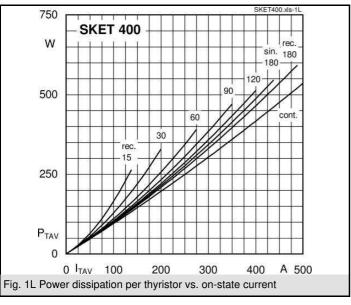
SEMIPACK® 4

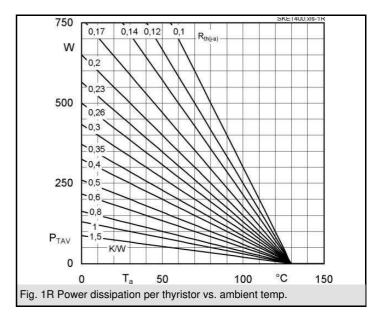
Thyristor Modules

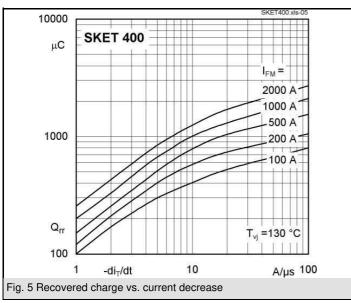
SKET 400

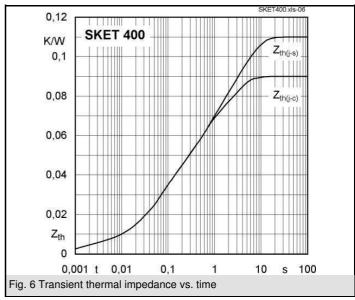
Features

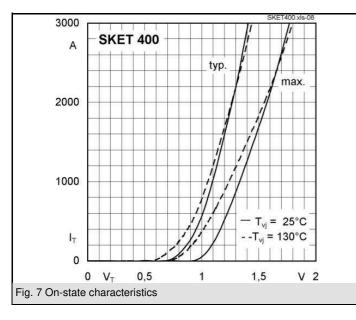
- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532

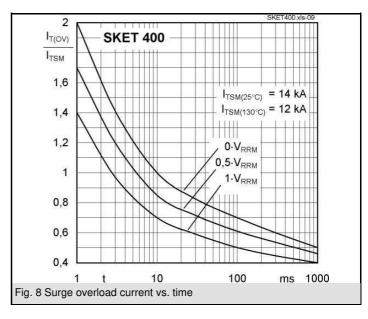

Typical Applications*

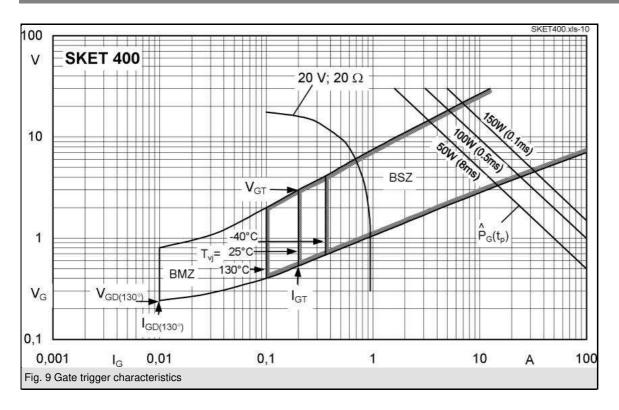

- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

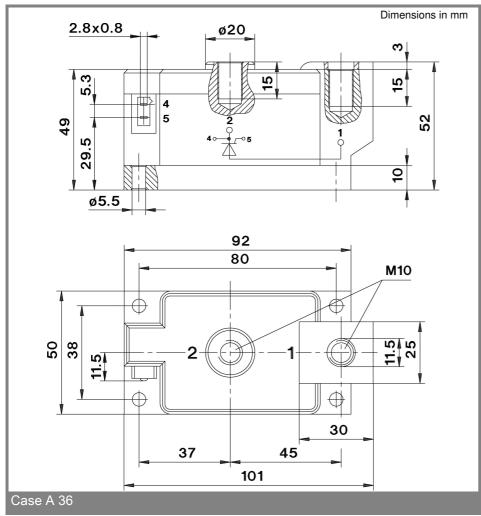

V_{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 700 A (maximum value for continuous operation)		
V	V	I _{TAV} = 400 A (sin. 180; T _c = 84 °C)		
900	800	SKET 400/08E		
1300	1200	SKET 400/12E		
1500	1400	SKET 400/14E		
1700	1600	SKET 400/16E		
1900	1800	SKET 400/18E		


Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	392 (280)	Α
I _D	P16/300F; T _a = 35 °C; B2 / B6	700 / 880	Α
I _{RMS}	P16/400F; T _a = 35 °C; W1 / W3	905 / 3 * 720	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	14000	Α
	T _{vj} = 130 °C; 10 ms	12000	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	980000	A²s
	T_{vj} = 130 °C; 8,3 10 ms	720000	A²s
V_{T}	T _{vj} = 25 °C; I _T = 2400 A	max. 1,7	V
$V_{T(TO)}$	$T_{vj} = 130 ^{\circ}C$	max. 0,92	V
r _T	$T_{vj} = 130 ^{\circ}C$	max. 0,3	mΩ
I_{DD} ; I_{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 130	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vj} = 130 °C	max. 125	A/µs
(dv/dt) _{cr}	$T_{vj} = 130 ^{\circ}\text{C}$	max. 1000	V/µs
t_q	$T_{vj}^{9} = 130 ^{\circ}\text{C}$,	150 200	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
I_{L}	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ. / max.}$	500 / 2000	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.	0,09	K/W
R _{th(j-c)}	sin. 180	0,095	K/W
R _{th(j-c)}	rec. 120	0,11	K/W
R _{th(c-s)}		0,02	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 40 + 130	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminal	17 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	940	g
Case		A 36	









^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

products in life support appliances and syster therefore strongly recommend prior consultat	ns is subject to	prior specification and written approva	ıl by SEMIKRON. We
therefore strongly recommend prior consultat	ion of our staff.		
4	21-03-2011	STM	© by SEMIKRON