SKET 330

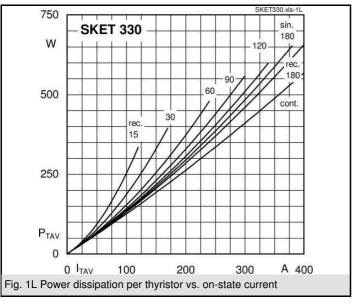
SEMIPACK® 4

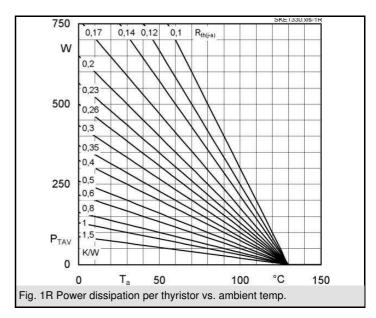
Thyristor Modules

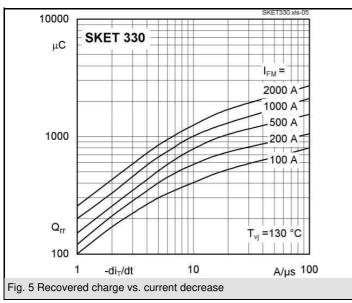
SKET 330

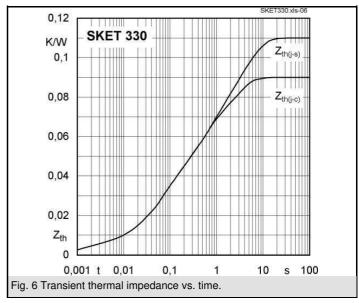
Features

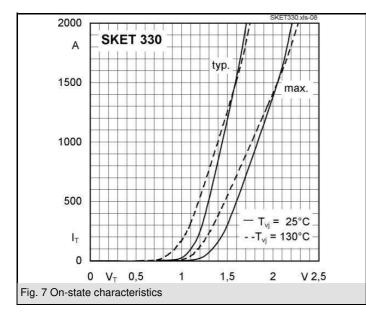
- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532

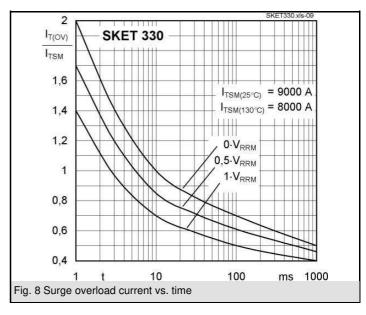

Typical Applications*

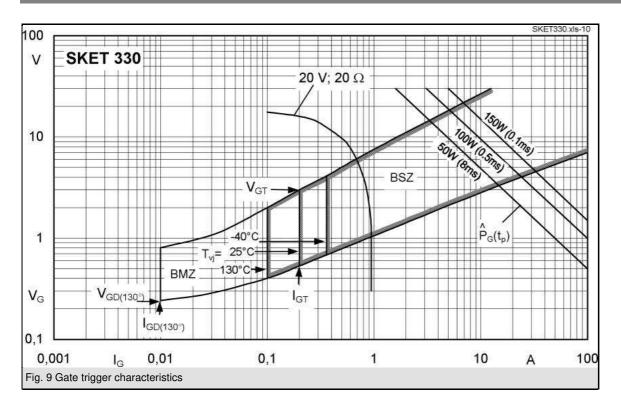

- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

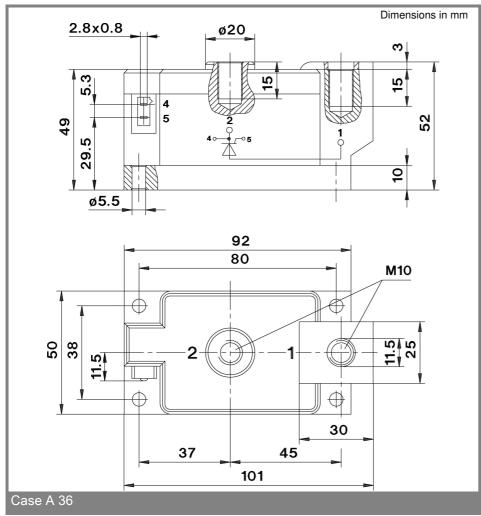

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 600 A (maximum value for continuous operation)		
V	V	I _{TAV} = 330 A (sin. 180; T _c = 78 °C)		
900	800	SKET 330/08E		
1300	1200	SKET 330/12E		
1500	1400	SKET 330/14E		
1700	1600	SKET 330/16E		
1900	1800	SKET 330/18E		
2100	2000	SKET 330/20E		
2300	2200	SKET 330/22E		


Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	295 (210)	Α
I _D	P16/300F; T _a = 35 °C; B2 / B6	530 / 665	Α
I _{RMS}	P16/400F; T _a = 35 °C; W1 / W3	685 / 3 * 550	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	9000	Α
	$T_{vj} = 130 ^{\circ}\text{C}; 10 \text{ms}$	8000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	405000	A²s
	T _{vj} = 130 °C; 8,3 10 ms	320000	A²s
V _T	T _{vi} = 25 °C; I _T = 1500 A	max. 2,05	V
$V_{T(TO)}$	T _{vi} = 130 °C	max. 1,2	V
r _T	T _{vj} = 130 °C	max. 0,55	mΩ
I_{DD} ; I_{RD}	$T_{vj} = 130 ^{\circ}\text{C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 200	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 125	A/µs
(dv/dt) _{cr}	T _{vi} = 130 °C	max. 1000	V/µs
t_q	$T_{vj} = 130 ^{\circ}\text{C}$	150 200	μs
IH	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	500 / 2000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.	0,09	K/W
$R_{th(j-c)}$	sin. 180	0,095	K/W
$R_{th(j-c)}$	rec. 120	0,11	K/W
$R_{th(c-s)}$		0,02	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 40 + 130	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1s / 1 min.	3600 / 3000	V~
M_s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminal	17 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	940	g
Case		A 36	









^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

products in life support appliances and syster therefore strongly recommend prior consultat	ns is subject to	prior specification and written approva	ıl by SEMIKRON. We
therefore strongly recommend prior consultat	ion of our staff.		
4	21-03-2011	STM	© by SEMIKRON